Climate-based model of spatial pattern of the species richness of ants in Georgia

Abstract

For optimal planning of conservation and monitoring measures, it is important to know the spatial pattern of species richness and especially areas with high species richness. A spatial pattern of the species richness of ants in Georgia (Caucasus) was modeled, areas with the highest number of ant’s species were inferred, and climatic factors that influence the pattern of ant diversity were identified. A database was created by accumulating occurrences for 63 ant species, including 256 localities and 2,018 species/occurrences. Species richness was positively correlated with variables associated with temperature and negatively correlated with variables associated with precipitation. Species richness reaches a maximum at the elevations 800–1,200 m a.s.l. and declines at both lower and higher altitudes. The role of climatic variables and geography of the study area in determining the observed pattern of species richness is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agosti D, Majer JD, Alonso LE, Schultz TR (2000) Ants: standard methods for measuring and monitoring biological diversity. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  2. Andersen AN, Majer JD (2004) Ants show the way down-under: invertebrates as bioindicators in land management. Front Ecol Environ 2:218–291

    Article  Google Scholar 

  3. Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semi-arid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140

    Article  Google Scholar 

  4. Brühl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277

    Article  Google Scholar 

  5. Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol 9:559–568

    Article  Google Scholar 

  6. Dunn RR, Sanders NJ, Fitzpatrick MC, Laurent E, Lessard J-P, Agosti D, Andersen AN, Bruhl C, Cerda X, Ellison AM, Fisher BL, Gibb H, Gotelli NJ, Gove A, Guenard B, Janda M, Kaspari M, Longino JT, Majer J, Mcglynn TP, Menke SB, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez AV, Vasconcelos HL (2007) Global ant (Hymenoptera: Formicidae) biodiversity and biogeography—a new database and its possibilities. Myrmecological News 10:77–83

    Google Scholar 

  7. Dunn RR, Sanders NJ, Menke SB, Weiser MD, Fitzpatrick MC, Laurent E, Lessard J-P, Agosti D, Andersen A, Bruhl C, Cerda X, Ellison A, Fisher B, Gibb H, Gotelli H, Gove A, Guénard B, Janda M, Kaspari M, Longino JT, Majer J, McGlynn TP, Menke SB, Parr C, Philpott S, Pfeiffer M, Retana J, Suarez A, Vasconcelos H (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333

    PubMed  Article  Google Scholar 

  8. Eliava I, Cholokava A, Kvavadze E, Bakhtadze G, Bukhnikashvili A (2007) New data on animal biodiversity of Georgia. Bulletin of the Georgian National Academy of Sciences 175(2):115–119

    Google Scholar 

  9. Fisher BL (1999) Ant diversity patterns along an elevational gradient in the resreve Naturalle Integraled’Andohalela, Madagascar. Fieldiana Zool 94:129–147

    Google Scholar 

  10. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16(1):24

    Google Scholar 

  11. Frouz J (2000) The effect of nest moisture on daily temperature regime in the nest of Formica polyctena wood ants. Insect Soc 47:229–235

    Article  Google Scholar 

  12. Frouz J, Finer L (2007) Diurnal and seasonal flucatuations in wood ant (Formica polyctena) nest temperature in two geographically distant populations along a south - north gradient. Insect Soci 54:251–259

    Article  Google Scholar 

  13. Frouz J, Jilkova V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol News 11:191–199

    Google Scholar 

  14. Garcia A (2006) Using ecological niche modelling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biol Conserv 130:25–46

    Article  Google Scholar 

  15. Gratiashvili N, Barjadze Sh (2008) Checklist of the ants (FORMICIDAE LATREILLE, 1809) of Georgia. Proc Instit Zool 23:130–146

    Google Scholar 

  16. Green WP, Pettry DE, Switzer RE (1999) Structure and hydrology of mounds of the imported fire ants in the south-eastern United States. Geoderma 93:1–17

    Article  Google Scholar 

  17. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climogy 25:1965–1978

    Article  Google Scholar 

  18. Iverson LR, Prasad MA (2001) Potential changes in tree species richness and forest community types following climate change. Ecosystems 4:186–199

    Article  CAS  Google Scholar 

  19. Janzen DH (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54:687-708

    Google Scholar 

  20. Kaspari M, Majer JD (2000) Using ants to monitor environmental change. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 89–98

    Google Scholar 

  21. Kass G (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29:119–127

    Article  Google Scholar 

  22. Kerr JT (2001) Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conserv Ecol 5(1):10. [Online] URL: http://www.consecol.org/vol5/iss1/art10/

    Google Scholar 

  23. Kienasta F, Wildia O, Brzezieckib B (1998) Potential impacts of climate change on species richness in mountain forests—an ecological risk assessment. Bioll Conserv 83:291–305

    Article  Google Scholar 

  24. Krebs CJ (2001) Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco

  25. Lawton JH, Bifnell DE, Bolton B, Blowmers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    Article  CAS  Google Scholar 

  26. McCahon TJ, Lockwood JA (1990) Nest architecture and pedoturbation of Formica obscuripes FOREL (Hymenoptera, Formicidae). Pan-Pac Entomol 66:147–156

    Google Scholar 

  27. Muñoz MES, Giovanni R, Siqueira MF, Sutton T, Brewer P, Pereira RS, Canhos DAL, Canhos VP (2009) openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15:111–135

    Article  Google Scholar 

  28. Myers N, Mittermier RA, Mittermier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  Article  CAS  Google Scholar 

  29. Newbold T, Gilbert F, Zalat S, El-Gabbas A, Reader T (2009) Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. J Biogeog 36:2085–2095

    Article  Google Scholar 

  30. Oliver I, Beattie AJ, York A (1998) Spatial fidelity of plants, vertebrate and invertebrate assemblages in multiple-use forest in Eastern Australia. Conserv Biol 12:822–835

    Article  Google Scholar 

  31. Olson DM (1994) The distribution of leaf litter invertebrates along a neotropical altitudinal gradient. J Trop Ecol 10:129–150

    Article  Google Scholar 

  32. Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions - a test of six presence-only methods. Rev Mex Biodivers 79:205–216

    Google Scholar 

  33. Sabu TK, Vineesh PJ, Vinod KV (2008) Diversity of forest litter-inhabiting ants along elevations in the Wayanad region of the Western Ghats. J Insect Sci 8:69. Available online: insectscience.org/8.69

    Google Scholar 

  34. Samson DA, Rickart EA, Gonzales PC (1997) Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29(3):349–363

    Article  Google Scholar 

  35. Sanders NJ, Moss J, Wagner D (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecol Biogeog 12:93–102

    Article  Google Scholar 

  36. Sauberer N, Zulka KP, Abensperg-Traun M, Berg HM, Bieringer G, Milasowszy N, Moser D, Storch C, Trostl R, Zechmeister H, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conser 117:181–190

    Article  Google Scholar 

  37. Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland Arthropod diversity. Ecology 79:2057-2070

    Google Scholar 

  38. Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  39. Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Google Scholar 

  40. Stockwell DRB (1999) Genetic algorithms II. In: Fielding AH (ed) Machine learning methods for ecological applications. Kluwer Academic Publishers, Boston, pp 123–144

    Google Scholar 

  41. Stockwell DRB, Peters DP (1999) The GARP modeling system: problems and solutions to automated spatial prediction. Int J Geogr Infn Syst 13:143–158

    Article  Google Scholar 

  42. Swets JA (1986) Indexes of discrimination or diagnostic accuracy—their ROCs and implied models. Psychol Bull 99:100–117

    PubMed  Article  CAS  Google Scholar 

  43. Tarkhnishvili D, Chaladze G, Gavashelishvili L, Javakhishvili Z, Mumladze L (2010) Georgian biodiversity database. Internet: http://www.biodiversity-georgia.net/. Accessed 12 Feb 2011

  44. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  45. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10:311

    Google Scholar 

  46. Toranza C, Arim M (2010) Cross-taxon congruence and environmental conditions. Ecology 10:18

    PubMed  Google Scholar 

  47. Van Diepen MV, Franses HP (2006) Evaluating Chi-squared automatic interaction detection. Inf Syst 31:814–831

    Article  Google Scholar 

  48. Van Hamburg H, Andersen AN, Meyer WJ, Robertson HG (2004) Ant commun ity development on rehabilitated ash dams in South African Highveld. Restor Ecol 12:552–558

    Article  Google Scholar 

  49. Wielgoss A, Tscharntke T, Buchori D, Fiala B, Clough Y (2010) Temperature and a dominant dolichoderine ant species affect ant diversity in Indonesian cacao plantations. Agr Ecosyst Environ 135:253–259

    Article  Google Scholar 

Download references

Acknowledgments

I thank Lexo Gavashelishvili and David Tarkhnishvili for providing valuable suggestions during the statistical analysis and for their comments on manuscript. I also express my gratitude to two anonymous reviewers whose comments significantly improved manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgi Chaladze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaladze, G. Climate-based model of spatial pattern of the species richness of ants in Georgia. J Insect Conserv 16, 791–800 (2012). https://doi.org/10.1007/s10841-012-9464-5

Download citation

Keywords

  • Biodiversity
  • Climatic variables
  • Formicidae
  • Spatial pattern
  • Altitudinal gradient
  • Ground moisture