Journal of Insect Conservation

, Volume 16, Issue 4, pp 557–570 | Cite as

Nesting habitat segregation between closely related terricolous sphecid species (Hymenoptera:Spheciformes): key role of soil physical characteristics

  • Miroslav Srba
  • Petr HenebergEmail author


Microhabitat selection based on abiotic factors was examined in five species of digger wasps (Sphex funerarius, Ammophila heydeni, Ammophila pubescens, Ammophila sabulosa, Bembix tarsata), four of which are of high conservation interest. All the study sites were located in areas affected by anthropogenic disturbance (reclaimed brown-coal mining areas, and railway dykes) in Central Europe. The individual species responded differentially to the variability in each of the physical characteristics measured, which resulted in site-specific exclusion of individual sphecid species. The sphecids were found to discriminate between available microhabitats based on ground inclination (slope) and vegetation cover. All but A. heydeni segregated the microhabitats according to the content of gravel and sand particles. S. funerarius and B. tarsata were limited by their preferences of low soil compactness, whereas A. pubescens utilized highly compacted soils, which were predominant in the study area. Soil shear strength (cohesiveness) was driving the level of gregariousness of the sphecids. In B. tarsata, number of cells per burrow was found to be higher in soils with increased penetration resistance. Experimental increase in soil compactness led to the abandonment of nesting microhabitats in the subsequent nesting seasons. Besides the well-known biotic factors, such as specialization at different size or type of prey, variability in abiotic factors between individual microhabitats (e.g. patches of sand) was found to be both necessary and sufficient to allow the parallel presence of viable populations of several sphecid species.


Aculeata Colliery spoil heaps Habitat conservation Nest site quality Niche overlap Patch use 



We would like to thank Jitka Vilímová (advisor to M.S.), Pavel Tyrner, Petr Janšta, Petr Bogusch, Kateřina Rezková, and Jakub Straka for their advice and valuable comments. We would also like to thank Jan Boháč and Zdeňka Metelková for their methodical guidance in soil analysis and for sharing their analytical equipment. We are grateful to Phil Sheridan for language editing. The data analyzed were contributed in part as a M.Sc. thesis of M.S. at the Charles University in Prague, Faculty of Natural Sciences. The measurements were supported in part by the Ministry of the Environment of the Czech Republic.

Supplementary material

10841_2011_9441_MOESM1_ESM.pdf (168 kb)
Supplementary material 1 (PDF 168 kb)


  1. Alcock J (1975) Social interactions in the solitary wasp Cerceris simplex (Hymenoptera: Sphecidae). Behaviour 54:142–151CrossRefGoogle Scholar
  2. Alcock J (1980) Communal nesting in an Australian solitary wasp, Cerceris antipodes Smith (Hymenoptera, Sphecidae). J Austral Entomol Soc 19:223–228CrossRefGoogle Scholar
  3. Asís JD, Gayubo SF, Tormos J (1992) Data on the nesting behaviour of five European Bembix and description of the mature larvae of B. merceti and B. rostrata (Hymenoptera, Sphecidae). Deut Entomol Z 39:221–231Google Scholar
  4. Banaszak J (1995) Changes in fauna of wild bees in Europe. Pedagogical University, BydgoszczGoogle Scholar
  5. Banaszak J (1996) Ecological bases of conservation of wild bees. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic Press, New York, pp 55–62Google Scholar
  6. Bitsch J, Berbier Y, Gayubo SF, Schmidt K, Ohl M (1997) Hyménoptères Sphecidae d’Europe occidentale, vol. 2. Faune de France 82. Fédération française des Sociétés de Sciences Naturelles, ParisGoogle Scholar
  7. Bláha L (1992) Negative effects of soil factors in immission region on the yield and its components. Rost Vyroba 38:437–446Google Scholar
  8. Bonelli B, Martinelli ED (1994) Note sul comportamento di nidificazione di Ammophila pubescens Curtis (Hymenoptera, Sphecidae). Boll Inst Ent G Grandi Univ Bologna 49:101–112Google Scholar
  9. Bonte D (2005) Anthropogenic induced changes in nesting densities of the dune-specialised digger wasp Bembix rostrata (Hymenoptera: Sphecidae). Eur J Entomol 102:809–812Google Scholar
  10. Brockmann HJ (1979) Nest site selection in the great golden digger wasp, Sphex ichneumoneus L. (Sphecidae). Ecol Entomol 4:211–224CrossRefGoogle Scholar
  11. Campbell JW, Hanula JL, Waldrop TA (2007) Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol Conserv 134:393–494CrossRefGoogle Scholar
  12. Cane JH (1991) Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J Kans Entomol Soc 64:406–413Google Scholar
  13. Casiraghi M, Polidori C, Ferreri P, Preatoni DG, Andrietti F, Martinoli A (2003) Does the distance between nest clusters affect reproductive success in Ammophila sabulosa (Hymenoptera Sphecidae)? Ethol Ecol Evol 15:329–341CrossRefGoogle Scholar
  14. Cruz-Sánchez MA, Asís JD, Gayubo SF, Tormos J, González JA (2011) The effects of wildfire on Spheciformes wasp community structure: the importance of local habitat conditions. J Insect Conserv 15:487–503CrossRefGoogle Scholar
  15. Dejean A, Carpenter JM, Gibernau M, Leponce M, Corbara B (2010) Nest relocation and high mortality rate in a Neotropical social wasp: Impact of an exceptionally rainy La Nina year. C R Biol 333:35–40PubMedCrossRefGoogle Scholar
  16. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  17. Elliott NB, Elliott WM (1987) Nest usurpation by females of Cerceris cribrosa (Hymenoptera: Sphecidae). J Kans Entomol Soc 60:397–402Google Scholar
  18. Evans HE, Hook AW (1982) Communal nesting in the digger wasp Cerceris australis (Hymenoptera: Sphecidae). Austral J Zool 30:557–568CrossRefGoogle Scholar
  19. Evans HE, O’Neill KM (2007) The sand wasps: natural history and behavior. Harvard University Press, CambridgeGoogle Scholar
  20. Farkač J, Král D, Škorpík M (eds) (2005) List of threatened species in the Czech Republic. Invertebrates. AOPK ČR, PragueGoogle Scholar
  21. Fellendorf M, Mohra C, Paxton RJ (2004) Devasting effects of river flooding to the ground-nesting bee, Andrena vaga (Hymenoptera: Andrenidae), and its associated fauna. J Insect Cons 8:311–322CrossRefGoogle Scholar
  22. Ferton C (1923) La vie des Abeilles et des Guêpes. Oeuvres choisies, groupées et annotées par Etienne Rabaud & Francois Picard. Etienne Chiron, ParisGoogle Scholar
  23. Fewell JH, Page RE (1999) The emergence of division of labour in forced associations of normally solitary ant queens. Evol Ecol Res 1:537–548Google Scholar
  24. Field J, Brace S (2004) Pre-social benefits of extended parental care. Nature 428:650–652PubMedCrossRefGoogle Scholar
  25. Field J, Turner E, Fayle T, Foster WA (2007) Costs of egg-laying and offspring provisioning: multifaceted parental investment in a digger wasp. Proc R Soc B 274:445–451PubMedCrossRefGoogle Scholar
  26. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  27. Gathmann A, Greiler H-J, Tscharntke T (1994) Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing. Oecologia 98:8–14CrossRefGoogle Scholar
  28. Gess FW, Gess SK (1993) Effects of increased land utilisation on species representation and diversity of aculeate wasps and bees in the semi-arid areas of Southern Africa. In: Lasalle J, Gauld ID (eds) Hymenoptera and Biodiversity. CAB International, Wallingford, pp 83–113Google Scholar
  29. Ghazoul J (2001) Effect of soil hardness on aggression in the solitary wasp Mellinus arvensis. Ecol Entomol 26:457–466CrossRefGoogle Scholar
  30. Gilroy JJ, Sutherland WJ (2007) Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol Evol 22:351–356PubMedCrossRefGoogle Scholar
  31. Gliński J, Horabik J, Lipiec J (eds) (2011) Encyclopedia of Agrophysics. Springer, BerlinGoogle Scholar
  32. Gotlieb A, Hollender Y, Mandelik Y (2011) Gardening in the desert changes bee communities and pollination network characteristics. Basic Appl Ecol 12:310–320CrossRefGoogle Scholar
  33. Haigh M, Reed H, Flege A, D’Aucourt M, Plamping K, Cullis M, Woodruffe P, Sawyer S, Panhuis W, Wilding G, Farrugia F, Powell S (2010) Effect of planting method on the survival of Alnus glutinosa and Quercus petraea in compacted coal-mine spoils, South Wales. In: Sklenička P, Singhal R, Kašparová I (eds) 12th international symposium on environmental issues and waste management in energy and mineral production—SWEMP 2010. CULS, Prague, pp 164–171Google Scholar
  34. Head KH (1984) Manual of soil laboratory testing. Pentech Press, LondonGoogle Scholar
  35. Helms Cahan S, Fewell JH (2004) Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogomyrmex californicus. Behav Ecol Sociobiol 56:9–17CrossRefGoogle Scholar
  36. Heneberg P (2001) Size of sand grains as a significant factor affecting the nesting of bank swallows (Riparia riparia). Biologia 56:205–210Google Scholar
  37. Heneberg P (2009) Soil penetrability as a key factor affecting the nesting of burrowing birds. Ecol Res 24:453–459CrossRefGoogle Scholar
  38. Herbstová V, Herle I (2009) Structure transitions of clay fills in North-Western Bohemia. Eng Geol 104:157–166CrossRefGoogle Scholar
  39. Holbrook CT, Clark RM, Jeanson R, Bertram SM, Kukuk PF, Fewell JH (2009) Emergence and consequences of division of labor in associations of normally solitary sweat bees. Ethology 115:301–310CrossRefGoogle Scholar
  40. Hranitz JM, Barthell JF, Thorp RW, Overall LM, Griffith JL (2009) Nest Site Selection Influences Mortality and Stress Responses in Developmental Stages of Megachile apicalis Spinola (Hymenoptera: Megachilidae). Environ Entomol 38:484–492PubMedCrossRefGoogle Scholar
  41. Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88:322–329PubMedCrossRefGoogle Scholar
  42. Jennersten O (1988) Pollination of Dianthus deltoides (Caryophillaceae): effects of habitat fragmentation on visitation and seed set. Conserv Biol 2:359–366CrossRefGoogle Scholar
  43. Johnson RA (2000) Water loss in desert ants: caste variation and the effect of cuticle abrasion. J Kans Entomol Soc 79:309–320Google Scholar
  44. Kim J, Williams N, Kremen C (2006) Effects of cultivation and proximity to natural habitat on ground-nesting native bees in California sunflower fields. J Kans Entomol Soc 79:309–320CrossRefGoogle Scholar
  45. Klapwijk MJ, Grobler BC, Ward K, Wheeler D, Lewis OT (2010) Influence of experimental warming and shading on host-parasitoid synchrony. Glob Change Biol 16:102–112CrossRefGoogle Scholar
  46. Kondo NI, Yamanaka D, Kanbe Y, Kunitake YK, Yoneda M, Tsuchida K, Goka K (2009) Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 96:467–475PubMedCrossRefGoogle Scholar
  47. Kostylev VE, Erlandsson J, Ming MY, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecol Complex 2:272–286CrossRefGoogle Scholar
  48. Kraus FB, Szentgyörgyi H, Rożej E, Rhode M, Moroń D, Woyciechowski M, Moritz RFA (2011) Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Cons Genet 12:187–192CrossRefGoogle Scholar
  49. Kurzewski FE (2001) Comparative nesting behavior of Episyron quinquenotatus (Hymenoptera: Pompilidae) in the Northeastern United States. Northeast Nat 8:403–426Google Scholar
  50. Larkin JL, Maehr DS, Krupa JJ, Cox JJ, Alexy K, Unger DE, Barton C (2008) Small mammal response to vegetation and spoil conditions on a reclaimed surface mine in Eastern Kentucky. Southeast Nat 7:401–412CrossRefGoogle Scholar
  51. Lockwood JA, Shaw SR, Struttmann JM (1996) Biodiversity of wasp species (Insecta: Hymenoptera) in burned and unburned habitats of Yellowstone National Park, Wyoming, USA. J Hymenopt Res 5:1–15Google Scholar
  52. Macek J, Straka J, Bogusch P, Dvořák L, Bezděčka P, Tyrner P (2010) Blanokřídlí České republiky I.—žahadloví. Academia, PrahaGoogle Scholar
  53. McCorquodale DB (1989) Soil softness, nest initiation and nest sharing in the wasp, Cerceris antipodes (Hymenoptera: Sphecidae). Ecol Entomol 14:191–196CrossRefGoogle Scholar
  54. Michener CD, Rettenmeyer CW (1956) The ethology of Andrena erythronii with comparative data on other species. Univ Kans Sci Bull 37:645–684Google Scholar
  55. Mitchell MS, Lancia RA, Gerwin JA (2001) Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecol Appl 11:1692–1708CrossRefGoogle Scholar
  56. Murray TE, Kuhlmann M, Potts SG (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236CrossRefGoogle Scholar
  57. Nagamitsu T, Yamagishi H, Kenta T, Inari N, Kato E (2010) Competitive effects of the exotic Bombus terrestris on native bumble bees revealed by a field removal experiment. Popul Ecol 52:123–136CrossRefGoogle Scholar
  58. O’Neill KM (2001) Solitary wasps. Behavior and natural history. Comstock Publishing Associates, IthacaGoogle Scholar
  59. Paini DR, Roberts JD (2005) Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol Conserv 123:103–112CrossRefGoogle Scholar
  60. Peeters TMJ, van Achtenberg C, Heitmans WRB, Klein WE, Lefeber V, van Loon AJ, Mabelis AA, Nieuwenhuijsen H, Reemer M, den Rond J, Smit J, Velthuis HHW (eds) 2004. De wespenen mieren van Nederland (Hymenoptera: Aculeata). Nederlandse Fauna deel 6. Nationaal Natuurhistorisch Museum Naturalis, Leiden & KNNV Uitgeverij, UtrechtGoogle Scholar
  61. Petanidou T, Vokou D (1990) Pollination and pollen energetics in Mediterranean ecosystems. Am J Bot 77:986–992CrossRefGoogle Scholar
  62. Petren K, Case TJ (1998) Habitat structure determines competition intensity and invasion success in gecko lizards. Proc Natl Acad Sci USA 95:11739–11744PubMedCrossRefGoogle Scholar
  63. Polidori C, Scanni B, Scamoni E, Giovanetti M, Andrietti F, Paxton RJ (2005) Satellite flies (Leucophora personata, Diptera: Anthomyiidae) and other dipteran parasites of the communal bee Andrena agilissima (Hymenoptera: Andrenidae) on the island of Elba, Italy. J Nat Hist 39:2745–2758CrossRefGoogle Scholar
  64. Polidori C, Casiraghi M, Di Lorenzo M, Valarani B, Andrietti F (2006) Philopatry, nest choice, and aggregation temporal-spatial change in the digger wasp Cerceris arenaria (Hymenoptera: Crabronidae). J Ethol 24:155–163CrossRefGoogle Scholar
  65. Polidori C, Boesi R, Pesarini C, Papadia C, Bevacqua S, Federici M, Andrietti F (2007) Temporal relationship between the prey spectrum and population structure of the Weevil-Hunting Wasp Cerceris arenaria (Hymenoptera: Crabronidae). Zool Stud 46:83–91Google Scholar
  66. Polidori C, Rubichi A, Barbieri V, Trombino L, Donegana M (2010a) Floral resources and nesting requirements of the ground-nesting social bee, Lasioglossum malachurum (Hymenoptera: Halictidae), in a Mediterranean semiagricultural landscape. psyche, article ID 851947, doi: 10.1155/2010/851947
  67. Polidori C, Gobbi M, Chatenoud L, Santoro D, Montani O, Andrietti F (2010b) Taxon-biased diet preference in the ‘generalist’ beetle-hunting wasp Cerceris rubida provides insights on the evolution of prey specialization in apoid wasps. Biol J Linn Soc 99:544–558CrossRefGoogle Scholar
  68. Polidori C, Bevacqua S, Andrietti F (2010c) Do digger wasps time their provisioning activity to avoid cuckoo wasps (Hymenoptera: Crabronidae and Chrysididae)? Acta Ethol 12:11–21CrossRefGoogle Scholar
  69. Polidori C, Mendiola P, Asís JD, Tormos J, Selfa J (2010d) Temporal asynchrony and spatial co-occurence with the host: the foraging patterns of Nemka viduata, a parasitoid of digger wasps (Hymenoptera: Mutillidae and Crabronidae). J Ethol 28:353–361CrossRefGoogle Scholar
  70. Potts SG, Willmer P (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol Entomol 22:319–328CrossRefGoogle Scholar
  71. Potts SG, Dafni A, Ne’eman G (2001) Pollination of a core flowering species in Mediterranean phrygana: variation in pollinator diversity, abundance and effectiveness in response to fire. Oikos 92:71–80CrossRefGoogle Scholar
  72. Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003a) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642CrossRefGoogle Scholar
  73. Potts SG, Vulliamy B, Dafni A, Ne’eman G, O’Toole C, Roberts S, Willmer P (2003b) Response of plant-pollinator communities following fire: changes in diversity, abundance, and reward structure. Oikos 101:103–112CrossRefGoogle Scholar
  74. Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol Entomol 30:78–85CrossRefGoogle Scholar
  75. Rodríguez-Tovar FJ (2007) Substrate firmness controlling nesting behavior of Bembix oculata (Hymenoptera, Bembicinae). In: Bromley RG, Buatois LA, Márango MG, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM Special publication No. 88, pp 353–359Google Scholar
  76. Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312PubMedCrossRefGoogle Scholar
  77. Schirmer S, Sengonca C, Blaeser P (2008) Influence of abiotic factors on some biological and ecological characteristics of the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) parasitizing Aphis gossypii (Sternorrhyncha: Aphididae). Eur J Entomol 105:121–129Google Scholar
  78. Shrestha RK, Lal R (2011) Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 161:168–176CrossRefGoogle Scholar
  79. Sinha SK, Wang MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26:47–64CrossRefGoogle Scholar
  80. Srba M (2005) Ekologické poznámky k výskytu Bembix tarsata (Hymenoptera: Sphecidae) v severozápadních Čechách. In: Dvořák L, Bogusch P (eds) Žahadloví blanokřídlí v českých zemích a na Slovensku 1. Charles University in Prague & National Park and Protected Landscape Area of Šumava, pp 13–14Google Scholar
  81. Srba M, Tyrner P (2003) The occurence of B. tarsata (Hymenoptera, Sphecidae) in NW Bohemia. Sborník Oblastního muzea v Mostě, řada přírodovědná 25:49–51Google Scholar
  82. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440CrossRefGoogle Scholar
  83. Straka J, Bogusch P, Tyrner P, Vepřek D (2004) New important faunistic records of Hymenoptera (Chrysidoidea, Apoidea, Vespoidea) from the Czech Republic. Klapalekiana 40:143–153Google Scholar
  84. Taki H, Viana BF, Kevan PG, Silva FO, Buck M (2008) Does forest loss affect the communities of trap-nesting wasps (Hymenoptera: Aculeata) in forests? Landscape versus local habitat conditions. J Insect Conserv 12:15–21CrossRefGoogle Scholar
  85. Tepedino VJ, Stanton NL (1981) Diversity and competition in bee-plant communities on short-grass prairie. Oikos 36:35–44CrossRefGoogle Scholar
  86. Tryjanowski P, Pawlikowski T, Pawlikowski K, Banaszak-Cibicka W, Sparks TH (2010) Does climate influence phenological trends in social wasps (Hymenoptera: Vespinae) in Poland? Eur J Entomol 107:203–208Google Scholar
  87. Tsuchida K, Konfo NI, Inoue MN, Goka K (2010) Reproductive disturbance risks to indigenous Japanese bumblebees from introduced Bombus terrestris. Appl Entomol Zool 45:49–58CrossRefGoogle Scholar
  88. Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107:212–224CrossRefGoogle Scholar
  89. Wcislo WT (1984) Gregarious nesting of a digger wasp as a “selfish herd” response to a parasitic fly (Hymenoptera: Sphecidae; Diptera: Sacrophagidae). Behav Ecol Sociobiol 15:157–160CrossRefGoogle Scholar
  90. Weaving AJS (1989) Habitat selection and nest construction behaviour in some Afrotropical species of Ammophila (Hymenoptera: Sphecidae). J Nat Hist 23:847–871CrossRefGoogle Scholar
  91. Wilson EE, Holway DA (2010) Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91:3294–3302PubMedCrossRefGoogle Scholar
  92. Yuan H-W, Wang M-K, Chang W-L, Wang L-P, Chen Y-M, Chiou C-R (2006) Colony site choice of blue-tailed bee-eaters: influences of soil, vegetation, and water quality. J Nat Hist 40:485–493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Experimental Plant Biology, Faculty of Natural SciencesCharles University in PraguePrague 2Czech Republic
  2. 2.Third Faculty of MedicineCharles University in PraguePrague 10Czech Republic

Personalised recommendations