Skip to main content

Study design and mark-recapture estimates of dispersal: a case study with the endangered damselfly Coenagrion mercuriale

Abstract

Accurate data on dispersal ability are vital to the understanding of how species are affected by fragmented landscapes. However, three factors may limit the ability of field studies to detect a representative sample of dispersal events: (1) the number of individuals monitored, (2) the area over which the study is conducted and (3) the time over which the study is conducted. Using sub-sampling of mark-release-recapture data from a study on the endangered damselfly Coenagrion mercuriale (Charpentier), we show that maximum dispersal distance is strongly related to the number of recaptured individuals in the mark-release-recapture study and the length of time over which the study is conducted. Median dispersal distance is only related significantly to the length of the study. Spatial extent is not associated with either dispersal measure in our analysis. Previously consideration has been given to the spatial scale of dispersal experiments but we demonstrated conclusively that temporal scale and the number of marked individuals also have the potential to affect the measurement of dispersal. Based on quadratic relationships between the maximum dispersal distance, recapture number and length of study, we conclude that a previous study was of sufficient scale to characterise the dispersal kernel of C. mercuriale. Our method of analysis could be used to ensure that the results of mark-release-recapture studies are independent of levels of spatial and temporal investment. Improved confidence in dispersal estimates will enable better management decisions to be made for endangered species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen KA, Thompson DJ (2009) Movement characteristics of the scarce blue-tailed damselfly, Ischnura pumilio. Insect Conserv Divers 3:5–14

    Article  Google Scholar 

  2. Angelibert S, Giani N (2003) Dispersal characteristics of three odonate species in a patchy habitat. Ecography 26:13–20

    Article  Google Scholar 

  3. Anholt BR (1990) Size-biased dispersal prior to breeding in a damselfly. Oecologia 83:385–387

    Google Scholar 

  4. Araújo MB, Cabezas M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Article  Google Scholar 

  5. Baker M, Nur N, Geupel GR (1995) Correcting biased estimates of dispersal and survival due to limited study area: theory and an application using wrentits. Condor 97:663–674

    Article  Google Scholar 

  6. Barrowclough GF (1978) Sampling bias in dispersal studies based on finite area. Bird-Banding 49:333–341

    Article  Google Scholar 

  7. Baur B (1986) Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Ecography 9:117–125

    Article  Google Scholar 

  8. Beirinckx K, Van Gossum H, Lajeunesse MJ, Forbes MR (2006) Sex biases in dispersal and philopatry: insights from a meta-analysis based on capture-mark-recapture studies of damselflies. Oikos 113:539–547

    Article  Google Scholar 

  9. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    PubMed  CAS  Article  Google Scholar 

  10. Bots J, Breuker CJ, Van Kerkhove A, Van Dongen S, De Bruyn L, Van Gossum H (2009) Variation in flight morphology in a female polymorphic damselfly: intraspecific, intrasexual, and seasonal differences. Can J Zool 87:86–94

    Article  Google Scholar 

  11. Boudot J-P (2006) Coenagrion mercuriale. In: IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1 www.iucnredlist.org, Accessed 26 Oct 2009

  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  13. Cant ET, Smith AD, Reynolds DR, Osborne JL (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc Royal Soc Biol Sci (B) 272:785–790

    Google Scholar 

  14. Conrad KF, Willson KH, Harvey IF, Thomas CJ, Sherratt TN (1999) Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography 22:524–531

    Google Scholar 

  15. Conrad KF, Willson KH, Whitfield K, Harvey IF, Thomas CJ, Sherratt TN (2002) Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph and ectoparasitism. Ecography 25:439–445

    Article  Google Scholar 

  16. Corbet PS (1962) A biology of dragonflies. Witherby, London

    Google Scholar 

  17. Corbet PS (1999) Dragonflies: behaviour and ecology of odonata. Harley, Colchester

    Google Scholar 

  18. Diffendorfer JE, Gaines MS, Holt RD (1995) Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus). Ecology 76:827–839

    Article  Google Scholar 

  19. Doak DF, Mills LS (1994) A useful role for theory in conservation. Ecology 75:615–626

    Article  Google Scholar 

  20. Franzén M, Nilsson SG (2007) What is the required minimum landscape size for dispersal studies? J Anim Ecol 76:1224–1230

    PubMed  Article  Google Scholar 

  21. Gibbons LK, Reed JM, Chew FS (2002) Habitat requirements and local persistence of three damselfly species (Odonata: Coenagrionidae). J Insect Conserv 6:47–55

    Article  Google Scholar 

  22. Haas CA (1995) Dispersal and use of corridors by birds in wooded patches on an agricultural landscape. Conserv Biol 9:845–854

    Article  Google Scholar 

  23. Hardersen S (2007) Telemetry of Anisoptera after emergence—first results (Odonata). Int J Odonatol 10:189–202

    Google Scholar 

  24. Hassall C, Thompson DJ (2008a) The impacts of environmental warming on Odonata: a review. Int J Odonatol 11:131–153

    Google Scholar 

  25. Hassall C, Thompson DJ (2008b) Latitudinal variation in morphology in two sympatric damselfly species with contrasting range dynamics (Odonata: Coenagrionidae). Eur J Entomol 105:939–944

    Google Scholar 

  26. Hayashi F, Nakane M (1989) Radio tracking and activity monitoring of the dobsonfly larva, Protohermes grandis (Megaloptera: Corydalidae). Oecologia 78:468–472

    Article  Google Scholar 

  27. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:1–6

    Article  Google Scholar 

  28. Hunger H, Röske W (2001) Short-range dispersal of the southern damselfly (Coenagrion mercuriale) defined experimentally using UV fluorescent ink. Z Ökologie u Naturschutz 9:181–187

    Google Scholar 

  29. Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16:415

    Article  Google Scholar 

  30. Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    PubMed  CAS  Article  Google Scholar 

  31. Lerner J, Mackey J, Casey F (2007) What’s in Noah’s Wallet? Land conservation spending in the United States. Bioscience 57:419–423

    Article  Google Scholar 

  32. Macdonald DW, Johnson DDP (2001) Dispersal in theory and practice: consequences for conservation biology. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  33. Michiels NK, Dhondt AA (1991) Characteristics of dispersal in sexually mature dragonflies. Ecol Entomol 16:449–459

    Article  Google Scholar 

  34. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  35. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  36. Purse BV, Hopkins GW, Day KJ, Thompson DJ (2003) Dispersal characteristics and management of a rare damselfly. J Appl Ecol 40:716–728

    Article  Google Scholar 

  37. Riley JR, Smith AD, Reynolds DR, Edwards AS, Osborne JL, Williams IH, Carreck NL, Poppy GM (1996) Tracking bees with harmonic radar. Nature 379:29–30

    CAS  Article  Google Scholar 

  38. Rink M, Sinsch U (2007) Radio-telemetric monitoring of dispersing stag beetles: implications for conservation. J Zool 272:235–243

    Article  Google Scholar 

  39. Rouquette JR, Thompson DJ (2005) Habitat associations of the endangered damselfly, Coenagrion mercuriale, in a water meadow ditch system in southern England. Biol Conserv 123:225–235

    Article  Google Scholar 

  40. Rouquette JR, Thompson DJ (2007) Patterns of movement and dispersal in an endangered damselfly and the consequences for its management. J Appl Ecol 44:692–701

    Article  Google Scholar 

  41. Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28:252–256

    Article  Google Scholar 

  42. Schultz CB (1998) Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. Conserv Biol 12:284–292

    Article  Google Scholar 

  43. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  44. Smith TD, Allen J, Clapham PJ, Hammond PS, Katona S, Larsen F, Lien J, Mattila D, Palsbøll PJ, Sigurjónsson J, Stevick PT, ØIen N (1999) An ocean-basin-wide mark-recapture study of the north atlantic humpback whale (Megaptera novaeangliae). Marine Mammal Sci 15:1–32

    Article  Google Scholar 

  45. Stettmer C (1996) Colonisation and dispersal patterns of banded (Calopteryx splendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south-east German streams. Eur J Entomol 93:579–593

    Google Scholar 

  46. Støen O-G, Zedrosser A, Sæbø S, Swenson J (2006) Inversely density-dependent natal dispersal in brown bears Ursus arctos. Oecologia 148:356–364

    PubMed  Article  Google Scholar 

  47. Suhonen J, Honkavaara J, Rantala MJ (2010) Activation of the immune system promotes insect dispersal in the wild. Physiol Ecol 162:541–547

    Google Scholar 

  48. Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145

    PubMed  CAS  Article  Google Scholar 

  49. Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48

    Article  Google Scholar 

  50. Thompson DJ (1991) Size-biased dispersal prior to breeding in a damselfly: conflicting evidence from a natural population. Oecologia 87:600–601

    Article  Google Scholar 

  51. Thompson DJ, Purse BV (1999) A search for long-distance dispersal in the southern damselfly, Coenagrion mercuriale (Charpentier). J British Dragonfly Soc 15:46–50

    Google Scholar 

  52. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  53. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc Royal Soc Biol Sci (Series B), 270: 467–473

    Google Scholar 

  54. Turchin P, Thoeny WT (1993) Quantifying dispersal of southern pine beetles with mark-recapture experiments and a diffusion model. Ecol Appl 3:187–198

    Article  Google Scholar 

  55. Ward L, Mill PJ (2007) Long range movements by individuals as a vehicle for range expansion in Calopteryx splendens (Odonata: Zygoptera). Eur J Entomol 104:195–198

    Google Scholar 

  56. Waser PM, Jones WT (1983) Natal philopatry among solitary mammals. Q Rev Biol 58:355–390

    Article  Google Scholar 

  57. Watts PC, Rouquette JR, Saccheri IJ, Kemp SJ, Thompson DJ (2004) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol Ecol 13:2931–2945

    PubMed  CAS  Article  Google Scholar 

  58. Watts PC, Saccheri IJ, Kemp SJ, Thompson DJ (2006) Population structure and the impact of regional and local habitat isolation upon levels of genetic diversity of the endangered damselfly Coenagrion mercuriale (Odonata: Zygoptera). Freshw Biol 51:193–205

    CAS  Article  Google Scholar 

  59. Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Mol Ecol 16:737–751

    PubMed  Article  Google Scholar 

  60. Weatherhead PJ, Forbes MRL (1994) Natal philopatry in passerine birds: genetic or ecological influences? Behav. Ecol 5:426–433

    Google Scholar 

  61. Wikelski M, Moskowitz D, Adelham JS, Cochran J, Wilcove DS, May ML (2006) Simple rules guide dragonfly migration. Biol Lett 2:325–329

    PubMed  Article  Google Scholar 

  62. Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

The fieldwork was funded by the Natural Environment Research Council (NER/A/S/2000/01322) and the Environment Agency. We thank Tim Sykes for his enthusiasm and help at all stages of the project and Jim Rouquette for his project management skills. Dan Bert, Kath Allen, Tom Sherratt and Brett Sandercock provided valuable comments on the manuscript. Coenagrion mercuriale is protected under Schedule 5 of the UK Wildlife & Countryside Act (1981) and all work was carried out under licence from Natural England. CH was funded by a Government of Canada Postdoctoral Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Hassall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hassall, C., Thompson, D.J. Study design and mark-recapture estimates of dispersal: a case study with the endangered damselfly Coenagrion mercuriale . J Insect Conserv 16, 111–120 (2012). https://doi.org/10.1007/s10841-011-9399-2

Download citation

Keywords

  • Damselfly
  • Dispersal
  • Dragonfly
  • Mark-release-recapture
  • Movement
  • Study design