Local and landscape effects on butterfly density in northern Idaho grasslands and forests

  • Amy Pocewicz
  • Penelope Morgan
  • Sanford D. Eigenbrode
Original Paper


Understanding butterfly response to landscape context can inform conservation management and planning. We tested whether local-scale resources (host and nectar plants, canopy cover) or landscape context, measured at two scales, better explained the densities of four butterfly species. The density of Coenonympha tullia, which has host plants strongly associated with grassland habitats, was positively correlated with the amount of grassland in 0.5- and 1-km radius landscapes and only occurred in forests when they bordered grasslands. For the other species, Celastrina ladon, Cupido amyntula, and Vanessa cardui, local-scale resources better explained butterfly densities, emphasizing the importance of local habitat quality for butterflies. These three species also used host plants that were distributed more heterogeneously within and among habitat types. Our findings demonstrate the importance of host plant spatial distributions when determining the scale at which butterfly density relates to resources, and we recommend that both these distributions and landscape context be evaluated when developing butterfly monitoring programs, managing for species of concern, or modeling potential habitat.


Conservation planning Distance sampling Edge effects Host plant Landscape context 


  1. Bailey RG (1994) Ecoregions of the world. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  2. Bergman K-O, Ask L, Askling J et al (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers Conserv 17:139–153. doi:10.1007/s10531-007-9235-x CrossRefGoogle Scholar
  3. Black AE, Strand E, Wright RG, Scott JM, Morgan P, Watson C (1998) Land use history at multiple scales: implications for conservation planning. Landsc Urban Plan 43:49–63. doi:10.1016/S0169-2046(98)00096-6 CrossRefGoogle Scholar
  4. Brown JA, Boyce MS (1998) Line transect sampling of Karner blue butterflies (Lycaeides melissa samuelis). Environ Ecol Stat 5:81–91. doi:10.1023/A:1009620105039 CrossRefGoogle Scholar
  5. Buckland ST, Anderson DR, Burnham KP et al (2004) Advanced distance sampling. Oxford University Press, New YorkGoogle Scholar
  6. Burham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer–Verlag, New YorkGoogle Scholar
  7. Caratti J (2004) Cover frequency: plant species cover and frequency quadrat method. FIREMON sampling methods. http://fire.org/ Accessed 15 August 2006
  8. Collinge SK, Prudic KL, Oliver JC (2003) Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv Biol 17:178–187. doi:10.1046/j.1523-1739.2003.01315.x CrossRefGoogle Scholar
  9. Corbet SA (2000) Butterfly nectaring flowers: butterfly morphology and flower form. Entomol Exp Appl 96:289–298. doi:10.1023/A:1004096432758 CrossRefGoogle Scholar
  10. Davis JD, Debinski DM, Danielson BJ (2007) Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landscape Ecol 22:1341–1354. doi:10.1007/s10980-007-9111-9 CrossRefGoogle Scholar
  11. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426. doi:10.1034/j.1600-0706.2003.12387.x CrossRefGoogle Scholar
  12. Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966. doi:10.1007/s10531-005-4314-3 CrossRefGoogle Scholar
  13. Dover J, Settele J (2008) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv. doi:10.1007/s10841-008-9135-8 Google Scholar
  14. Ehrlich PR (2003) Butterflies, test systems, and biodiversity. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. The University of Chicago Press, Chicago, Illinois, pp 1–6Google Scholar
  15. Elzinga CL, Salzer DW, Willoughby JW et al (2001) Monitoring plant and animal populations. Blackwell, MaldenGoogle Scholar
  16. Groves C, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. Bioscience 52:499–512. doi:10.1641/0006-3568(2002)052[0499:PFBCPC]2.0.CO;2 CrossRefGoogle Scholar
  17. Grundel R, Pavlovic NB, Sulzman CL (1998) Habitat use by the endangered Karner blue butterfly in oak woodlands: the influence of canopy cover. Biol Conserv 85:47–53. doi:10.1016/S0006-3207(97)00165-1 CrossRefGoogle Scholar
  18. Gude PH, Hansen AJ, Jones DA (2007) Biodiversity consequences of alternative future land use scenarios in greater Yellowstone. Ecol Appl 17:1004–1018. doi:10.1890/05-1108 CrossRefPubMedGoogle Scholar
  19. Guppy CS, Shepard JH (2001) Butterflies of British Columbia. University of British Columbia Press, VancouverGoogle Scholar
  20. Holl KD (1995) Nectar resources and their influence on butterfly communities on reclaimed coal surface mines. Restor Ecol 3:76–85. doi:10.1111/j.1526-100X.1995.tb00080.x CrossRefGoogle Scholar
  21. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900. doi:10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  22. Kuefler D, Haddad NM (2006) Local versus landscape determinants of butterfly movement behaviors. Ecography 29:549–560CrossRefGoogle Scholar
  23. New TR, Pyle RM, Thomas JA et al (1995) Butterfly conservation management. Annu Rev Entomol 40:57–83. doi:10.1146/annurev.en.40.010195.000421 CrossRefGoogle Scholar
  24. Noss RF, Strittholt J, Orians G, Adams J (1997) Palouse grasslands. In: Ricketts T (ed) Terrestrial ecosystems of North America: a conservation assessment. Island Press, Washington, DC, pp 275–276Google Scholar
  25. Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534. doi:10.1007/s00442-006-0464-6 CrossRefPubMedGoogle Scholar
  26. Opler PA, Krizek GO (1984) Butterflies East of the Great Plains, an illustrated natural history. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  27. Opler PA, Pavulaan H, Stanford RE, Pogue M (2007) Butterflies and moths of North America. Bozeman, Montana: Mountain Prairie Information Node. http:/www.butterfliesandmoths.org Accessed 10 October 2007
  28. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer–Verlag, New YorkGoogle Scholar
  29. Pocewicz A (2006) Modeling landscape change and evaluating ecological effects of landscape composition and configuration in northern Idaho. Ph.D. Dissertation, University of Idaho, MoscowGoogle Scholar
  30. Powell AFLA, Busby WH, Kindscher K (2007) Status of the regal fritillary (Speyeria idalia) and effects of fire management on its abundance in northeastern Kansas, USA. J Insect Conserv 11:299–308. doi:10.1007/s10841-006-9045-6 CrossRefGoogle Scholar
  31. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, PortlandGoogle Scholar
  32. Pyle RM (2002) The butterflies of cascadia. Seattle Audubon Society, SeattleGoogle Scholar
  33. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org
  34. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70:840–852. doi:10.1046/j.0021-8790.2001.00546.x CrossRefGoogle Scholar
  35. Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86. doi:10.1007/s00442-008-0976-3 CrossRefPubMedGoogle Scholar
  36. Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653Google Scholar
  37. Schultz CB, Dlugosch KM (1999) Nectar and hostplant scarcity limit populations of an endangered Oregon butterfly. Oecologia 119:231–238. doi:10.1007/s004420050781 CrossRefGoogle Scholar
  38. Schumaker NH, Ernst T, White D, Baker J, Haggerty P (2004) Projecting wildlife responses to alternative future landscapes in Oregon’s Willamette Basin. Ecol Appl 14:381–400. doi:10.1890/02-5010 CrossRefGoogle Scholar
  39. Scott JA (1986) The butterflies of North America. Stanford University Press, StanfordGoogle Scholar
  40. Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards TC, Ulliman J, Wright G (1993) Gap analysis: a geographic approach to protection of biological diversity. Wild Monogr 123:41Google Scholar
  41. Stoner KJL, Joern A (2004) Landscape vs. local habitat scale influences to insect communities from tallgrass prairie remnants. Ecol Appl 14:1306–1320. doi:10.1890/03-5112 CrossRefGoogle Scholar
  42. Thomas JA, Bourn NAD, Clarke RT et al (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B Biol Sci 268:1791–1796. doi:10.1098/rspb.2001.1693 CrossRefGoogle Scholar
  43. Tooker JF, Reagel PF, Hanks LM (2002) Nectar sources of day-flying lepidoptera of central Illinois. Ann Entomol Soc Am 95:84–96. doi:10.1603/0013-8746(2002)095[0084:NSODFL]2.0.CO;2 CrossRefGoogle Scholar
  44. Tudor O, Dennis RLH, Greatorex-Davies JN et al (2004) Flower preferences of woodland butterflies in the UK: nectaring specialists are species of conservation concern. Biol Conserv 119:397–403. doi:10.1016/j.biocon.2004.01.002 CrossRefGoogle Scholar
  45. Weibull A-C, Ostman O (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361. doi:10.1078/1439-1791-00173 CrossRefGoogle Scholar
  46. Weiss SB (1999) Cars, cows, and checker spot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv Biol 13:1476–1486. doi:10.1046/j.1523-1739.1999.98468.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amy Pocewicz
    • 1
  • Penelope Morgan
    • 2
  • Sanford D. Eigenbrode
    • 3
  1. 1.The Nature ConservancyLanderUSA
  2. 2.Department of Forest Resources, College of Natural ResourcesUniversity of IdahoMoscowUSA
  3. 3.Department of Plant, Soil and Entomological Sciences, College of AgricultureUniversity of IdahoMoscowUSA

Personalised recommendations