Skip to main content
Log in

Impact of dexmedetomidine on electrophysiological properties and arrhythmia inducibility in adult patients referred for reentrant supraventricular tachycardia ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Drugs used for sedation/analgesia may affect the basic cardiac electrophysiologic properties or even supraventricular tachycardia (SVT) inducibility. Dexmedetomidine (DEX) is a selective alpha-2 adrenergic agonist with sedative and analgesic properties. A comprehensive evaluation on use of DEX for reentrant SVT ablation in adults is lacking. The present study aims to systematically assess the impact of DEX on cardiac electrophysiology and SVT inducibility.

Methods

Hemodynamic, electrocardiographic, and electrophysiological parameters and SVT inducibility were assessed before and after DEX infusion in patients scheduled for ablation of reentrant SVT.

Results

The population of this prospective observational study included 55 patients (mean age of 58.7 ± 14 years, 29 males [52.7%]). A decrease in systolic and diastolic blood pressure and in heart rate was observed after DEX infusion (p = 0.001 for all). DEX increased corrected sinus node refractory time, atrial effective refractory period, AH interval, AV Wenckebach cycle length, and AV node effective refractory period without affecting the His-Purkinje conduction or ventricular myocardium refractoriness. No AV blocks or sinus arrests occurred during DEX infusion. Globally, there was no difference in SVT inducibility in basal condition or after DEX infusion (46/55 [83.6%] vs. 43/55 [78.1%] patients; p = 0.55), without a difference in isoprenaline use (p = 1.0). In 4 (7.3%) cases, the SVT was inducible only after DEX infusion. In 34.5% of cases, DEX infusion unmasked the presence of an obstructive sleeping respiratory pattern, represented mainly by snoring.

Conclusions

DEX depresses sinus node function and prolongs atrioventricular refractoriness without significantly affecting the rate of SVT inducibility in patients scheduled for reentrant SVT ablation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

AES:

atrial extrastimulus

AV:

atrioventricular

AVNRT:

atrioventricular nodal reentrant tachycardia

AVRT:

atrioventricular reentrant tachycardia

AERP:

atrial effective refractory period

AVNERP:

atrioventricular effective refractory period

BMI:

body mass index

cSNRT:

corrected sinus nodal recovery time

CS:

coronary sinus

DEX:

dexmedetomidine

DBP:

diastolic blood pressure

ECG:

electrocardiogram

EP:

electrophysiological

EPS:

electrophysiological study

HR:

heart rate

OSAS:

obstructive sleep apnea syndrome

SBP:

systolic blood pressure

VERP:

ventricular effective refractory period

RF:

radiofrequency

SVT:

supraventricular tachycardia

References

  1. Katritsis DG. Conscious sedation for diagnostic electrophysiology and catheter ablation of supraventricular tachycardia. Europace. 2019;21:3–4.

    PubMed  Google Scholar 

  2. Vladinov G, Fermin L, Longini R, Ramos Y, Maratea E. Choosing the anesthetic and sedative drugs for supraventricular tachycardia ablations: a focused review. Pacing Clin Electrophysiol. 2018;41:1555–63.

    Article  PubMed  Google Scholar 

  3. Warpechowski P, Lima GG, Medeiros CM, Santos ATL, Kruse M, Migloransa MH, Kalil RAK. Randomized study of propofol effect on electrophysiological properties of the atrioventricular node in patients with nodal reentrant tachycardia. Pacing Clin Electrophysiol. 2006;29:1375–82.

    Article  PubMed  Google Scholar 

  4. Lai L-P, Lin J-L, Wu M-H, Wang M-J, Huang C-H, Yeh H-M, Tseng Y-Z, Lien W-P, Huang SKS. Usefulness of intravenous propofol anesthesia for radiofrequency catheter ablation in patients with tachyarrhythmias: infeasibility for pediatric patients with ectopic atrial tachycardia. Pacing Clin Electrophysiol. 1999;22:1358–64.

    Article  CAS  PubMed  Google Scholar 

  5. Selvaraj RJ, Dukiya S, Ananthakrishna Pillai A, Satheesh S, Balachander J. Effects of conscious sedation on tachycardia inducibility and patient comfort during ablation of supraventricular tachycardia: a double blind randomized controlled study. Europace. 2019;21:142–6.

    Article  PubMed  Google Scholar 

  6. Lau W, Kovoor P, Ross DL. Cardiac electrophysiologic effects of midazolam combined with fentanyl. Am J Cardiol. 1993;72:177–82.

    Article  CAS  PubMed  Google Scholar 

  7. Paris A, Tonner PH. Dexmedetomidine in anaesthesia. Curr Opin Anaesthesiol. 2005;18:412–8.

    Article  PubMed  Google Scholar 

  8. Hammer GB, Drover DR, Cao H, Jackson E, Williams GD, Ramamoorthy C, Van Hare GF, Niksch A, Dubin AM. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83. table of contents

    Article  CAS  PubMed  Google Scholar 

  9. Ergul Y, Unsal S, Ozyilmaz I, Ozturk E, Carus H, Guzeltas A. Electrocardiographic and electrophysiologic effects of dexmedetomidine on children. Pacing Clin Electrophysiol. 2015;38:682–7.

    Article  PubMed  Google Scholar 

  10. Tirotta CF, Nguyen T, Fishberger S, Velis E, Olen M, Lam L, Madril DR, Hughes J, Lagueruela RG. Dexmedetomidine use in patients undergoing electrophysiological study for supraventricular tachyarrhythmias. Pediatr Anesth. 2017;27:45–51.

    Article  Google Scholar 

  11. Pöyhiä R, Nieminen T, Tuompo VWT, Parikka H. Effects of dexmedetomidine on basic cardiac electrophysiology in adults; a descriptive review and a prospective case study. Pharmaceuticals. 2022;15:1372.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sairaku A, Nakano Y, Suenari K, Tokuyama T, Kawazoe H, Matsumura H, Tomomori S, Amioka M, Kihara Y. Dexmedetomidine depresses sinoatrial and atrioventricular nodal function without any change in atrial fibrillation inducibility. J Cardiovasc Pharmacol. 2016;68:473–8.

    Article  CAS  PubMed  Google Scholar 

  13. Continuum of depth of sedation: definition of general anesthesia and levels of sedation/analgesia. [cited 2023 Mar 20] https://www.asahq.org/standards-and-guidelines/continuum-of-depth-of-sedation-definition-of-general-anesthesia-and-levels-of-sedationanalgesia. Accessed 5 May 2023

  14. Correa-Sales C, Nacif-Coelho C, Reid K, Maze M. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha 2 agonist in the rat. J Pharmacol Exp Ther. 1992;263:1046–9.

    CAS  PubMed  Google Scholar 

  15. Kamibayashi T, Hayashi Y, Mammoto T, Yamatodani A, Sumikawa K, Yoshiya I. Role of the vagus nerve in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology. 1995;83:992–9.

    Article  CAS  PubMed  Google Scholar 

  16. Stoetzer C, Reuter S, Doll T, Foadi N, Wegner F, Leffler A. Inhibition of the cardiac Na+ channel α-subunit Nav1.5 by propofol and dexmedetomidine. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389:315–25.

    Article  CAS  Google Scholar 

  17. Zhao J, Zhou C-L, Xia Z-Y, Wang L. Effects of dexmedetomidine on L-type calcium current in rat ventricular myocytes. Acta Cardiol Sin. 2013;29:175–80.

    PubMed  PubMed Central  Google Scholar 

  18. Behmenburg F, Pickert E, Mathes A, Heinen A, Hollmann MW, Huhn R, Berger MM. The cardioprotective effect of dexmedetomidine in rats is dose-dependent and mediated by BKCa channels. J Cardiovasc Pharmacol. 2017;69:228.

    Article  CAS  PubMed  Google Scholar 

  19. James TN. Structure and function of the sinus node, AV node and His bundle of the human heart: Part I-Structure. Prog Cardiovasc Dis. 2002;45:235–67.

    Article  PubMed  Google Scholar 

  20. Ellermann C, Brandt J, Wolfes J, Willy K, Wegner FK, Leitz P, Lange PS, Reinke F, Eckardt L, Frommeyer G. Safe electrophysiologic profile of dexmedetomidine in different experimental arrhythmia models. Sci Rep. 2021;11:23940.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Görges M, Whyte SD, Sanatani S, Dawes J, Montgomery CJ, Ansermino JM. Changes in QTc associated with a rapid bolus dose of dexmedetomidine in patients receiving TIVA: a retrospective study. Paediatr Anaesth. 2015;25:1287–93.

    Article  PubMed  Google Scholar 

  22. Chrysostomou C, Beerman L, Shiderly D, Berry D, Morell VO, Munoz R. Dexmedetomidine: a novel drug for the treatment of atrial and junctional tachyarrhythmias during the perioperative period for congenital cardiac surgery: a preliminary study. Anesth Analg. 2008;107:1514–22.

    Article  CAS  PubMed  Google Scholar 

  23. Chrysostomou C, Sanchez-de-Toledo J, Wearden P, Jooste EH, Lichtenstein SE, Callahan PM, Suresh T, O’Malley E, Shiderly D, Haney J, Yoshida M, Orr R, Munoz R, Morell VO. Perioperative use of dexmedetomidine is associated with decreased incidence of ventricular and supraventricular tachyarrhythmias after congenital cardiac operations. Ann Thorac Surg. 2011;92:964–72. discussion 972

    Article  PubMed  PubMed Central  Google Scholar 

  24. Slupe AM, Minnier J, Raitt MH, Zarraga IGE, MacMurdy KS, Jessel PM. Dexmedetomidine sedation for paroxysmal supraventricular tachycardia ablation is not associated with alteration of arrhythmia inducibility. Anesth Analg. 2019;129:1529–35.

    Article  CAS  PubMed  Google Scholar 

  25. Mani BC, Pavri BB. Dual atrioventricular nodal pathways physiology: a review of relevant anatomy, electrophysiology, and electrocardiographic manifestations. Indian Pacing Electrophysiol J. 2014;14:12–25.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Chiou C-W, Chen S-A, Kung M-H, Chang M-S, Prystowsky EN. Effects of continuous enhanced vagal tone on dual atrioventricular node and accessory pathways. Circulation. 2003;107:2583–8.

    Article  PubMed  Google Scholar 

  27. Stellbrink C, Diem B, Schauerte P, Brehmer K, Schuett H, Hanrath P. Differential effects of atropine and isoproterenol on the inducibility of atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol. 2001;5:463–9.

    Article  CAS  PubMed  Google Scholar 

  28. Huupponen E, Maksimow A, Lapinlampi P, Särkelä M, Saastamoinen A, Snapir A, Scheinin H, Scheinin M, Meriläinen P, Himanen S-L, Jääskeläinen S. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008;52:289–94.

    Article  CAS  PubMed  Google Scholar 

  29. Shin H-J, Kim E-Y, Hwang J-W, Do S-H, Na H-S. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: a prospective, randomized, controlled trial. BMC Anesthesiol. 2018;18:120.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vuković I, Duplančić B, Benzon B, Đogaš Z, Kovač R, Pecotić R. Midazolam versus dexmedetomidine in patients at risk of obstructive sleep apnea during urology procedures: a randomized controlled trial. J Clin Med. 2022;11:5849.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bernardini.

Ethics declarations

Ethics approval

This study complies with the Declaration of Helsinki and all participants provided written informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, A., Paoletti Perini, A., Padeletti, M. et al. Impact of dexmedetomidine on electrophysiological properties and arrhythmia inducibility in adult patients referred for reentrant supraventricular tachycardia ablation. J Interv Card Electrophysiol 67, 371–378 (2024). https://doi.org/10.1007/s10840-023-01640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-023-01640-7

Keywords

Navigation