Skip to main content
Log in

Impact of pulmonary veins anatomy on the outcomes of radiofrequency ablation for paroxysmal atrial fibrillation in the era of contact force-sensing ablation catheters

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Pulmonary vein (PV) isolation (PVI) has become the cornerstone of atrial fibrillation (AF) ablation in patients with paroxysmal AF (PAF). PVI durability is influenced by many factors including PVs anatomy. Data regarding the influence of PVs anatomical variations on the outcomes of PAF ablation in the era of contact force-sensing ablation catheters are scarce and contradictory.

Methods

Consecutive patients referred to our center for a first ablation of PAF using radiofrequency (RF) were included. PVs anatomy was classified into 3 groups: typical anatomy (4 distinct veins), left common ostium (LCO), and right accessory PV (RAPV). The primary outcome was recurrence of atrial arrhythmia episode during a 12-month follow-up after ablation.

Results

Two hundred twenty-three patients were included (mean age 58.4 ± 10.8 years and 70.9% male). Among this cohort, 141 patients (63.2%) had typical PV anatomy, 53 (23.8%) had a LCO, and 29 (13.0%) had a RAPV. The existence of a RAPV was not associated with a higher rate of AF recurrences (22 (14.3%) vs. 7 (10.1%), p = 0.519). After multivariate analysis, the presence of an LCO did not appear to be associated with the AF recurrence rate at 12 months (OR = 1.69, 95%CI 0.95–2.49, p = 0.098). Maintenance of antiarrhythmic drugs after ablation was the only factor independently associated with a decreased risk of AF recurrence at 12 months (OR = 0.76, 95%CI 0.60–0.97, p = 0.046).

Conclusion

This study suggests that the presence of an LCO or a RAPV is not associated with a higher rate of AF recurrence at 12 months after radiofrequency PVI using contact force-sensing catheters in PAF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AAD:

Antiarrhythmic drugs

AF:

Atrial fibrillation

PAF:

Paroxysmal atrial fibrillation

PV:

Pulmonary vein

PVI:

Pulmonary vein isolation

LA:

Left atrium

LVEF:

Left ventricular ejection fraction

CT:

Computed tomography

LCO:

Left common ostium

RAPV:

Right accessory pulmonary vein

RF:

Radiofrequency

References

  1. Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ Res. 2020;127:4–20. https://doi.org/10.1161/CIRCRESAHA.120.316340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373–498. https://doi.org/10.1093/eurheartj/ehaa612.

    Article  PubMed  Google Scholar 

  3. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, et al. AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;2019:140. https://doi.org/10.1161/CIR.0000000000000665.

    Article  Google Scholar 

  4. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66. https://doi.org/10.1056/NEJM199809033391003.

    Article  PubMed  Google Scholar 

  5. Verma A, Kilicaslan F, Pisano E, Marrouche NF, Fanelli R, Brachmann J, et al. Response of atrial fibrillation to pulmonary vein antrum isolation is directly related to resumption and delay of pulmonary vein conduction. Circulation. 2005;112:627–35. https://doi.org/10.1161/CIRCULATIONAHA.104.533190.

    Article  PubMed  Google Scholar 

  6. McLellan AJA, Ling L, Ruggiero D, Wong MCG, Walters TE, Nisbet A, et al. Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2014;11:549–56. https://doi.org/10.1016/j.hrthm.2013.12.025.

    Article  PubMed  Google Scholar 

  7. Larsen JM, Deyell MW, Macle L, Champagne J, Sarrazin J, Leong-Sit P, et al. Impact of left common pulmonary veins in the contact force versus cryoballoon atrial fibrillation ablation (CIRCA-DOSE) study. J Cardiovasc Electrophysiol. 2020;31:2300–7. https://doi.org/10.1111/jce.14652.

    Article  Google Scholar 

  8. Pichard C, Nicolas A, Galand V, Coquard C, Behar N, Chérel C, et al. Cryoballoon ablation of atrial fibrillation in patients with atypical right pulmonary vein anatomy. Arch Cardiovasc Dis. 2020;113:690–700. https://doi.org/10.1016/j.acvd.2020.05.008.

    Article  PubMed  Google Scholar 

  9. Benali K, Da Costa A, Macle L, Hammache N, Galand V, Romeyer C, et al. Distance between the descending aorta and the left inferior pulmonary vein as a determinant of biophysical parameters during paroxysmal atrial fibrillation cryoablation. J Cardiovasc Electrophysiol. 2021;32:2943–52. https://doi.org/10.1111/jce.15234.

    Article  PubMed  Google Scholar 

  10. Ronsoni RM, Silvestrini TL, Essebag V, Lopes RD, Lumertz Saffi MA, Luz Leiria TL. Association of the left common ostium with clinical outcome after pulmonary vein isolation in atrial fibrillation. Indian Pacing Electrophysiol J. 2021;21:95–100. https://doi.org/10.1016/j.ipej.2020.11.020.

    Article  PubMed  Google Scholar 

  11. Sohns C, Sohns JM, Bergau L, Sossalla S, Vollmann D, Luthje L, et al. Pulmonary vein anatomy predicts freedom from atrial fibrillation using remote magnetic navigation for circumferential pulmonary vein ablation. Europace. 2013;15:1136–42. https://doi.org/10.1093/europace/eut059.

    Article  PubMed  Google Scholar 

  12. den Uijl DW, Tops LF, Delgado V, Schuijf JD, Kroft LJM, de Roos A, et al. Effect of Pulmonary vein anatomy and left atrial dimensions on outcome of circumferential radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol. 2011;107:243–9. https://doi.org/10.1016/j.amjcard.2010.08.069.

    Article  Google Scholar 

  13. Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I Study. Circ Arrhythm Electrophysiol. 2013;6:327–33. https://doi.org/10.1161/CIRCEP.113.000374.

    Article  PubMed  Google Scholar 

  14. Kuck K-H, Reddy VY, Schmidt B, Natale A, Neuzil P, Saoudi N, et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm. 2012;9:18–23. https://doi.org/10.1016/j.hrthm.2011.08.021.

    Article  PubMed  Google Scholar 

  15. Kimura M, Sasaki S, Owada S, Horiuchi D, Sasaki K, Itoh T, et al. Comparison of lesion formation between contact force-guided and non-guided circumferential pulmonary vein isolation: a prospective, randomized study. Heart Rhythm. 2014;11:984–91. https://doi.org/10.1016/j.hrthm.2014.03.019.

    Article  PubMed  Google Scholar 

  16. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology. 2004;230:824–9. https://doi.org/10.1148/radiol.2303030315.

    Article  PubMed  Google Scholar 

  17. Perino AC, Leef GC, Cluckey A, Yunus FN, Askari M, Heidenreich PA, et al. Secular trends in success rate of catheter ablation for atrial fibrillation: the SMASH-AF cohort. Am Heart J. 2019;208:110–9. https://doi.org/10.1016/j.ahj.2018.10.006.

    Article  PubMed  Google Scholar 

  18. Mlcochova H, Tintera J, Porod V, Peichl P, Cihak R, Kautzner J. Magnetic resonance angiography of pulmonary veins: implications for catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2005;28:1073–80. https://doi.org/10.1111/j.1540-8159.2005.00228.x.

    Article  PubMed  Google Scholar 

  19. Kaseno K, Tada H, Koyama K, Jingu M, Hiramatsu S, Yokokawa M, et al. Prevalence and characterization of pulmonary vein variants in patients with atrial fibrillation determined using 3-dimensional computed tomography. Am J Cardiol. 2008;101:1638–42. https://doi.org/10.1016/j.amjcard.2008.01.053.

    Article  PubMed  Google Scholar 

  20. Wittkampf FHM, Vonken E-J, Derksen R, Loh P, Velthuis B, Wever EFD, et al. Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation. 2003;107:21–3. https://doi.org/10.1161/01.CIR.0000047065.49852.8F.

    Article  PubMed  Google Scholar 

  21. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003;107:2004–10. https://doi.org/10.1161/01.CIR.0000061951.81767.4E.

    Article  PubMed  Google Scholar 

  22. Stanford W, Breen JF. CT evaluation of left atrial pulmonary venous anatomy. Int J Cardiovasc Imaging. 2005;21:133–9. https://doi.org/10.1007/s10554-004-5347-5.

    Article  PubMed  Google Scholar 

  23. Beiert T, Lodde PC, Linneborn LPT, Werner J, Prinz L, Stöckigt F, et al. Outcome in patients with left common pulmonary vein after cryoablation with second-generation cryoballoon. Pacing Clin Electrophysiol. 2018;41:22–7. https://doi.org/10.1111/pace.13247.

    Article  PubMed  Google Scholar 

  24. Kubala M, Hermida J-S, Nadji G, Quenum S, Traulle S, Jarry G. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein: COMMON LEFT PULMONARY VEIN. Pacing Clin Electrophysiol. 2011;34:837–43. https://doi.org/10.1111/j.1540-8159.2011.03070.x.

    Article  PubMed  Google Scholar 

  25. Mulder AAW, Wijffels MCEF, Wever EFD, Boersma LVA. Pulmonary vein anatomy and long-term outcome after multi-electrode pulmonary vein isolation with phased radiofrequency energy for paroxysmal atrial fibrillation. Europace. 2011;13:1557–61. https://doi.org/10.1093/europace/eur236.

    Article  PubMed  Google Scholar 

  26. Hof I, Chilukuri K, Arbab-Zadeh A, Scherr D, Dalal D, Nazarian S, et al. Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? J Cardiovasc Electrophysiol. 2009;20:1005–10. https://doi.org/10.1111/j.1540-8167.2009.01504.x.

    Article  PubMed  Google Scholar 

  27. Woźniak-Skowerska I, Skowerski M, Wnuk-Wojnar A, Hoffmann A, Nowak S, Gola A, et al. Comparison of pulmonary veins anatomy in patients with and without atrial fibrillation: analysis by multislice tomography. Int J Cardiol. 2011;146:181–5. https://doi.org/10.1016/j.ijcard.2009.06.047.

    Article  PubMed  Google Scholar 

  28. Lin W-S, Prakash VS, Tai C-T, Hsieh M-H, Tsai C-F, Yu W-C, et al. Pulmonary vein morphology in patients with paroxysmal atrial fibrillation initiated by ectopic beats originating from the pulmonary veins: implications for catheter ablation. Circulation. 2000;101:1274–81. https://doi.org/10.1161/01.CIR.101.11.1274.

    Article  CAS  PubMed  Google Scholar 

  29. Tsao H-M, Yu W-C, Cheng H-C, Wu M-H, Tai C-T, Lin W-S, et al. Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J Cardiovasc Electrophysiol. 2001;12:809–13. https://doi.org/10.1046/j.1540-8167.2001.00809.x.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15:560–6. https://doi.org/10.1046/j.1540-8167.2004.03351.x.

    Article  PubMed  Google Scholar 

  31. Bittner A, Monnig G, Vagt AJ, Zellerhoff S, Wasmer K, Kobe J, et al. Pulmonary vein variants predispose to atrial fibrillation: a case-control study using multislice contrast-enhanced computed tomography. Europace. 2011;13:1394–400. https://doi.org/10.1093/europace/eur145.

    Article  PubMed  Google Scholar 

  32. Satoh T, Zipes DP. Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7:833–42. https://doi.org/10.1111/j.1540-8167.1996.tb00596.x.

    Article  CAS  PubMed  Google Scholar 

  33. Xu B, Xing Y, Xu C, Peng F, Sun Y, Wang S, et al. A left common pulmonary vein: anatomical variant predicting good outcomes of repeat catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30:717–26. https://doi.org/10.1111/jce.13876.

    Article  PubMed  Google Scholar 

  34. Aursulesei S, Cismaru G, Rosu R, Puiu M, Gusetu G, Zdrenghea D, Pop D. P995 The effect of pulmonary vein anatomy on outcome of catheter ablation for atrial fibrillation. Eur Heart J. 2018;39(suppl_1):ehy564.P995. https://doi.org/10.1093/eurheartj/ehy564.P995.

  35. Khoueiry Z, Albenque J-P, Providencia R, Combes S, Combes N, Jourda F, et al. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. Europace. 2016;18:1343–51. https://doi.org/10.1093/europace/euv419.

    Article  CAS  PubMed  Google Scholar 

  36. Istratoaie S, Roşu R, Cismaru G, VesaŞtefan C, Puiu M, Zdrenghea D, et al. The impact of pulmonary vein anatomy on the outcomes of catheter ablation for atrial fibrillation. Medicina (Mex). 2019;55:727. https://doi.org/10.3390/medicina55110727.

    Article  Google Scholar 

  37. Haïssaguerre M, Wright M, Hocini M, Jaïs P. The substrate maintaining persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2008;1:2–5. https://doi.org/10.1161/CIRCEP.108.764233.

    Article  PubMed  Google Scholar 

  38. Hunter RJ, Ginks M, Ang R, Diab I, Goromonzi FC, Page S, et al. Impact of variant pulmonary vein anatomy and image integration on long-term outcome after catheter ablation for atrial fibrillation. Europace. 2010;12:1691–7. https://doi.org/10.1093/europace/euq322.

    Article  PubMed  Google Scholar 

  39. Gerstenfeld EP. Contact force–sensing catheters: evolution or revolution in catheter ablation technology? Circ Arrhythm Electrophysiol. 2014;7:5–6. https://doi.org/10.1161/CIRCEP.114.001424.

    Article  PubMed  Google Scholar 

  40. Natale A, Reddy VY, Monir G, Wilber DJ, Lindsay BD, McElderry HT, et al. Paroxysmal AF catheter ablation with a contact force sensing catheter. J Am Coll Cardiol. 2014;64:647–56. https://doi.org/10.1016/j.jacc.2014.04.072.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Arthur Kohler and Maxime Tissier for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Benali.

Ethics declarations

Ethics approval

This study was approved by institutional ethics committee and all patients provided informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, K., Lai, V.D., Hammache, N. et al. Impact of pulmonary veins anatomy on the outcomes of radiofrequency ablation for paroxysmal atrial fibrillation in the era of contact force-sensing ablation catheters. J Interv Card Electrophysiol 66, 931–940 (2023). https://doi.org/10.1007/s10840-022-01393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01393-9

Keywords

Navigation