Skip to main content

Advertisement

Log in

Contemporary approach to catheter ablation of ventricular tachycardia in nonischemic cardiomyopathy

  • Review
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Nonischemic cardiomyopathy (NICM) comprises a heterogenous group of disorders with myocardial dysfunction unrelated to significant coronary disease. As the use of implantable defibrillators has increased in this patient population, catheter ablation is being utilized more frequently to treat NICM patients with ventricular tachycardia (VT). Progress has been made in identifying multiple subtypes of NICM with variable scar patterns. The distribution of scar is often mid-myocardial and subepicardial, and identifying and ablating this substrate can be challenging. Here, we will review the current understanding of NICM subtypes and the outcomes of VT ablation in this population. We will discuss the use of cardiac imaging, electrocardiography, and electroanatomic mapping to define the VT substrate and the ablation techniques required to successfully prevent VT recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.

    Article  PubMed  Google Scholar 

  2. Arbustini E, Narula N, Tavazzi L, et al. The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol. 2014;64:304–18.

    Article  PubMed  Google Scholar 

  3. Zeppenfeld K. Ventricular tachycardia ablation in nonischemic cardiomyopathy. JACC Clin Electrophysiol. 2018;4:1123–40.

    Article  PubMed  Google Scholar 

  4. de Bakker JM, van Capelle FJ, Janse MJ, et al. Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation. Circulation. 1993;88:915–26.

    Article  PubMed  Google Scholar 

  5. Kuo L, Liang JJ, Nazarian S, Marchlinski FE. Multimodality imaging to guide ventricular tachycardia ablation in patients with non-ischaemic cardiomyopathy. Arrhythm Electrophysiol Rev. 2020;8:255–64.

    Article  PubMed  Google Scholar 

  6. Ponikowski P, Voors AA, Anker SD, et al. [2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure]. Kardiol Pol. 2016;74:1037–147.

    Article  PubMed  Google Scholar 

  7. Ebert M, Richter S, Dinov B, Zeppenfeld K, Hindricks G. Evaluation and management of ventricular tachycardia in patients with dilated cardiomyopathy. Heart Rhythm. 2019;16:624–31.

    Article  PubMed  Google Scholar 

  8. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK. The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol. 2016;67:2996–3010.

    Article  PubMed  Google Scholar 

  9. Piers SR, Tao Q, van Huls van Taxis CF, Schalij MJ, van der Geest RJ, Zeppenfeld K. Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy. Circ Arrhythm Electrophysiol. 2013;6:875–83.

    Article  PubMed  Google Scholar 

  10. Kumar S, Androulakis AF, Sellal JM, et al. Multicenter experience with catheter ablation for ventricular tachycardia in Lamin A/C cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9:e004357.

    Article  CAS  PubMed  Google Scholar 

  11. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2020;142:e558–631.

    PubMed  Google Scholar 

  12. Santangeli P, Di Biase L, Lakkireddy D, et al. Radiofrequency catheter ablation of ventricular arrhythmias in patients with hypertrophic cardiomyopathy: safety and feasibility. Heart Rhythm. 2010;7:1036–42.

    Article  PubMed  Google Scholar 

  13. Towbin JA, McKenna WJ, Abrams DJ, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16:e301–72.

    Article  PubMed  Google Scholar 

  14. Garcia FC, Bazan V, Zado ES, Ren JF, Marchlinski FE. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2009;120:366–75.

    Article  PubMed  Google Scholar 

  15. Romero J, Patel K, Briceno D, et al. Endo-epicardial ablation vs endocardial ablation for the management of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2020;31:2022–31.

    Article  PubMed  Google Scholar 

  16. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.

    Article  PubMed  Google Scholar 

  17. Slart R, Glaudemans A, Lancellotti P, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol. 2018;25:298–319.

    Article  PubMed  Google Scholar 

  18. Tavora F, Cresswell N, Li L, Ripple M, Solomon C, Burke A. Comparison of necropsy findings in patients with sarcoidosis dying suddenly from cardiac sarcoidosis versus dying suddenly from other causes. Am J Cardiol. 2009;104:571–7.

    Article  PubMed  Google Scholar 

  19. Adhaduk M, Paudel B, Liu K, Ashwath M, Giudici M. Meta-analysis of catheter ablation outcomes in patients with cardiac sarcoidosis refractory ventricular tachycardia. Am J Cardiol. 2022;174:136–42.

    Article  PubMed  Google Scholar 

  20. Siontis KC, Santangeli P, Muser D, et al. Outcomes associated with catheter ablation of ventricular tachycardia in patients with cardiac sarcoidosis. JAMA Cardiol. 2022;7:175–83.

    Article  PubMed  Google Scholar 

  21. Jefic D, Joel B, Good E, et al. Role of radiofrequency catheter ablation of ventricular tachycardia in cardiac sarcoidosis: report from a multicenter registry. Heart Rhythm. 2009;6:189–95.

    Article  PubMed  Google Scholar 

  22. Naruse Y, Sekiguchi Y, Nogami A, et al. Systematic treatment approach to ventricular tachycardia in cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2014;7:407–13.

    Article  PubMed  Google Scholar 

  23. Bhatia NL, Tajik AJ, Wilansky S, Steidley DE, Mookadam F. Isolated noncompaction of the left ventricular myocardium in adults: a systematic overview. J Card Fail. 2011;17:771–8.

    Article  PubMed  Google Scholar 

  24. Bhaskaran A, Campbell T, Virk S, Bennett RG, Kizana E, Kumar S. Electrophysiologic and electroanatomic characterization of ventricular arrhythmias in non-compaction cardiomyopathy: a systematic review. J Cardiovasc Electrophysiol. 2021;32:1421–9.

    Article  PubMed  Google Scholar 

  25. Muser D, Liang JJ, Witschey WR, et al. Ventricular arrhythmias associated with left ventricular noncompaction: electrophysiologic characteristics, mapping, and ablation. Heart Rhythm. 2017;14:166–75.

    Article  PubMed  Google Scholar 

  26. Cronin EM, Bogun FM, Maury P, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol. 2020;59:145–298.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ravi V, Poudyal A, Khanal S, et al. A systematic review and meta-analysis comparing radiofrequency catheter ablation with medical therapy for ventricular tachycardia in patients with ischemic and non-ischemic cardiomyopathies. J Interv Card Electrophysiol. 2022.

  28. Muser D, Santangeli P, Castro SA, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9:e004328.

    Article  CAS  PubMed  Google Scholar 

  29. Liang JJ, Yang W, Santangeli P, et al. Amiodarone discontinuation or dose reduction following catheter ablation for ventricular tachycardia in structural heart disease. JACC Clin Electrophysiol. 2017;3:503–11.

    Article  PubMed  Google Scholar 

  30. Kanagasundram A, John RM, Stevenson WG. Sustained monomorphic ventricular tachycardia in nonischemic heart disease: arrhythmia-substrate correlations that inform the approach to ablation. Circ Arrhythm Electrophysiol. 2019;12:e007312.

    Article  PubMed  Google Scholar 

  31. Berruezo A, Mont L, Nava S, Chueca E, Bartholomay E, Brugada J. Electrocardiographic recognition of the epicardial origin of ventricular tachycardias. Circulation. 2004;109:1842–7.

    Article  PubMed  Google Scholar 

  32. Valles E, Bazan V, Marchlinski FE. ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3:63–71.

    Article  PubMed  Google Scholar 

  33. Kumareswaran R, Marchlinski FE. Practical guide to ablation for epicardial ventricular tachycardia: when to get access, how to deal with anticoagulation and how to prevent complications. Arrhythm Electrophysiol Rev. 2018;7:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Enriquez A, Malavassi F, Saenz LC, et al. How to map and ablate left ventricular summit arrhythmias. Heart Rhythm. 2017;14:141–8.

    Article  PubMed  Google Scholar 

  35. Indik JH, Gimbel JR, Abe H, et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14:e97–153.

    Article  PubMed  Google Scholar 

  36. Elsokkari I, Sapp JL, Doucette S, et al. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route. J Interv Card Electrophysiol. 2018;53:323–31.

    Article  PubMed  Google Scholar 

  37. Lakkireddy D, Shenthar J, Garg J, et al. Safety/efficacy of DOAC versus aspirin for reduction of risk of cerebrovascular events following VT ablation. JACC Clin Electrophysiol. 2021;7:1493–501.

    Article  PubMed  Google Scholar 

  38. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101:1288–96.

    Article  CAS  PubMed  Google Scholar 

  39. Cano O, Hutchinson M, Lin D, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009;54:799–808.

    Article  PubMed  Google Scholar 

  40. Tung R. Substrate mapping in ventricular arrhythmias. Card Electrophysiol Clin. 2019;11:657–63.

    Article  PubMed  Google Scholar 

  41. Dickfeld T, Tian J, Ahmad G, et al. MRI-guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol. 2011;4:172–84.

    Article  PubMed  Google Scholar 

  42. Jaïs P, Maury P, Khairy P, et al. Elimination of local abnormal ventricular activities: a new end point for substrate modification in patients with scar-related ventricular tachycardia. Circulation. 2012;125:2184–96.

    Article  PubMed  Google Scholar 

  43. Hutchinson MD, Gerstenfeld EP, Desjardins B, et al. Endocardial unipolar voltage mapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2011;4:49–55.

    Article  PubMed  Google Scholar 

  44. Betensky BP, Kapa S, Desjardins B, et al. Characterization of trans-septal activation during septal pacing: criteria for identification of intramural ventricular tachycardia substrate in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2013;6:1123–30.

    Article  PubMed  Google Scholar 

  45. Khaykin Y, Skanes A, Whaley B, et al. Real-time integration of 2D intracardiac echocardiography and 3D electroanatomical mapping to guide ventricular tachycardia ablation. Heart Rhythm. 2008;5:1396–402.

    Article  PubMed  Google Scholar 

  46. Bala R, Ren JF, Hutchinson MD, et al. Assessing epicardial substrate using intracardiac echocardiography during VT ablation. Circ Arrhythm Electrophysiol. 2011;4:667–73.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oloriz T, Silberbauer J, Maccabelli G, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ Arrhythm Electrophysiol. 2014;7:414–23.

    Article  PubMed  Google Scholar 

  48. Baldinger SH, Kumar S, Fujii A, et al. Substrate mapping for scar-related ventricular tachycardia in patients with resynchronization therapy-the importance of the pacing mode. J Interv Card Electrophysiol. 2019;55:55–62.

    Article  PubMed  Google Scholar 

  49. Crinion D, Neira V, Al Hamad N, et al. Close-coupled pacing to identify the “functional” substrate of ventricular tachycardia: long-term outcomes of the paced electrogram feature analysis technique. Heart Rhythm. 2021;18:723–31.

    Article  PubMed  Google Scholar 

  50. Aziz Z, Shatz D, Raiman M, et al. Targeted ablation of ventricular tachycardia guided by wavefront discontinuities during sinus rhythm. Circulation. 2019;140:1383–97.

    Article  PubMed  Google Scholar 

  51. Brunckhorst CB, Delacretaz E, Soejima K, Maisel WH, Friedman PL, Stevenson WG. Identification of the ventricular tachycardia isthmus after infarction by pace mapping. Circulation. 2004;110:652–9.

    Article  PubMed  Google Scholar 

  52. Kusa S, Miller MA, Whang W, et al. Outcomes of ventricular tachycardia ablation using percutaneous left ventricular assist devices. Circ Arrhythm Electrophysiol. 2017;10:e004717.

    Article  PubMed  Google Scholar 

  53. Baratto F, Pappalardo F, Oloriz T, et al. Extracorporeal membrane oxygenation for hemodynamic support of ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2016;9:e004492.

    Article  CAS  PubMed  Google Scholar 

  54. Tung R, Raiman M, Liao H, et al. Simultaneous endocardial and epicardial delineation of 3D reentrant ventricular tachycardia. J Am Coll Cardiol. 2020;75:884–97.

    Article  PubMed  Google Scholar 

  55. Sosa E, Scanavacca M, d’Avila A, Pilleggi F. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7:531–6.

    Article  CAS  PubMed  Google Scholar 

  56. Keramati AR, DeMazumder D, Misra S, et al. Anterior pericardial access to facilitate electrophysiology study and catheter ablation of ventricular arrhythmias: a single tertiary center experience. J Cardiovasc Electrophysiol. 2017;28:1189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gunda S, Reddy M, Pillarisetti J, et al. Differences in complication rates between large bore needle and a long micropuncture needle during epicardial access: time to change clinical practice? Circ Arrhythm Electrophysiol. 2015;8:890–5.

    Article  PubMed  Google Scholar 

  58. Kumar S, Bazaz R, Barbhaiya CR, et al. “Needle-in-needle” epicardial access: preliminary observations with a modified technique for facilitating epicardial interventional procedures. Heart Rhythm. 2015;12:1691–7.

    Article  PubMed  Google Scholar 

  59. Soejima K, Couper G, Cooper JM, Sapp JL, Epstein LM, Stevenson WG. Subxiphoid surgical approach for epicardial catheter-based mapping and ablation in patients with prior cardiac surgery or difficult pericardial access. Circulation. 2004;110:1197–201.

    Article  PubMed  Google Scholar 

  60. Ghannam M, Siontis KC, Cochet H, et al. Value of mapping and ablation of ventricular tachycardia targets within the coronary venous system in patients with nonischemic cardiomyopathy. Heart Rhythm. 2020;17:520–6.

    Article  PubMed  Google Scholar 

  61. Desjardins B, Morady F, Bogun F. Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation. J Am Coll Cardiol. 2010;56:1320–7.

    Article  PubMed  Google Scholar 

  62. Aryana A, O’Neill PG, Pujara DK, et al. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation. Heart Rhythm. 2016;13:1602–11.

    Article  PubMed  Google Scholar 

  63. Di Biase L, Burkhardt JD, Pelargonio G, et al. Prevention of phrenic nerve injury during epicardial ablation: comparison of methods for separating the phrenic nerve from the epicardial surface. Heart Rhythm. 2009;6:957–61.

    Article  PubMed  Google Scholar 

  64. Sacher F, Roberts-Thomson K, Maury P, et al. Epicardial ventricular tachycardia ablation a multicenter safety study. J Am Coll Cardiol. 2010;55:2366–72.

    Article  PubMed  Google Scholar 

  65. Julia J, Bokhari F, Uuetoa H, et al. A new era in epicardial access for the ablation of ventricular arrhythmias: the Epi-Co2 Registry. JACC Clin Electrophysiol. 2021;7:85–96.

    Article  PubMed  Google Scholar 

  66. Della Bella P, Brugada J, Zeppenfeld K, et al. Epicardial ablation for ventricular tachycardia: a European multicenter study. Circ Arrhythm Electrophysiol. 2011;4:653–9.

    Article  PubMed  Google Scholar 

  67. Essebag V, Joza J, Nery PB, et al. Prognostic value of noninducibility on outcomes of ventricular tachycardia ablation: a VANISH substudy. JACC Clin Electrophysiol. 2018;4:911–9.

    Article  PubMed  Google Scholar 

  68. Santangeli P, Frankel DS, Marchlinski FE. End points for ablation of scar-related ventricular tachycardia. Circ Arrhythm Electrophysiol. 2014;7:949–60.

    Article  PubMed  Google Scholar 

  69. Soejima K, Stevenson WG, Maisel WH, Sapp JL, Epstein LM. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation. Circulation. 2002;106:1678–83.

    Article  PubMed  Google Scholar 

  70. Di Marco A, Oloriz Sanjuan T, Paglino G, et al. Late potentials abolition reduces ventricular tachycardia recurrence after ablation especially in higher-risk patients with a chronic total occlusion in an infarct-related artery. J Cardiovasc Electrophysiol. 2018;29:1119–24.

    Article  PubMed  Google Scholar 

  71. Di Biase L, Burkhardt JD, Lakkireddy D, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015;66:2872–82.

    Article  PubMed  Google Scholar 

  72. Tzou WS, Frankel DS, Hegeman T, et al. Core isolation of critical arrhythmia elements for treatment of multiple scar-based ventricular tachycardias. Circ Arrhythm Electrophysiol. 2015;8:353–61.

    Article  PubMed  Google Scholar 

  73. Berruezo A, Fernández-Armenta J, Andreu D, et al. Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation. Circ Arrhythm Electrophysiol. 2015;8:326–36.

    Article  PubMed  Google Scholar 

  74. Nguyen DT, Gerstenfeld EP, Tzou WS, et al. Radiofrequency ablation using an open irrigated electrode cooled with half-normal saline. JACC Clin Electrophysiol. 2017;3:1103–10.

    Article  PubMed  Google Scholar 

  75. Nguyen DT, Tzou WS, Sandhu A, et al. Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myocardial substrate refractory to standard ablation. JACC Clin Electrophysiol. 2018;4:1176–85.

    Article  PubMed  Google Scholar 

  76. Neira V, Santangeli P, Futyma P, et al. Ablation strategies for intramural ventricular arrhythmias. Heart Rhythm. 2020;17:1176–84.

    Article  PubMed  Google Scholar 

  77. Nguyen DT, Zheng L, Zipse MM, et al. Bipolar radiofrequency ablation creates different lesion characteristics compared to simultaneous unipolar ablation. J Cardiovasc Electrophysiol. 2019;30:2960–7.

    Article  PubMed  Google Scholar 

  78. Nguyen DT, Tzou WS, Brunnquell M, et al. Clinical and biophysical evaluation of variable bipolar configurations during radiofrequency ablation for treatment of ventricular arrhythmias. Heart Rhythm. 2016;13:2161–71.

    Article  PubMed  Google Scholar 

  79. Stevenson WG, Tedrow UB, Reddy V, et al. Infusion needle radiofrequency ablation for treatment of refractory ventricular arrhythmias. J Am Coll Cardiol. 2019;73:1413–25.

    Article  PubMed  Google Scholar 

  80. Kumar S, Barbhaiya CR, Sobieszczyk P, et al. Role of alternative interventional procedures when endo- and epicardial catheter ablation attempts for ventricular arrhythmias fail. Circ Arrhythm Electrophysiol. 2015;8:606–15.

    Article  PubMed  Google Scholar 

  81. Kreidieh B, Rodriguez-Manero M, Schurmann P, Ibarra-Cortez SH, Dave AS, Valderrabano M. Retrograde coronary venous ethanol infusion for ablation of refractory ventricular tachycardia. Circ Arrhythm Electrophysiol. 2016;9:e004352.

  82. Robinson CG, Samson PP, Moore KMS, et al. Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation. 2019;139:313–21.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Im SI, Higuchi S, Lee A, et al. Pulsed field ablation of left ventricular myocardium in a swine infarct model. JACC Clin Electrophysiol. 2022;8:722–31.

    Article  PubMed  Google Scholar 

  84. Romero J, Shivkumar K, Valderrabano M, et al. Modern mapping and ablation techniques to treat ventricular arrhythmias from the left ventricular summit and interventricular septum. Heart Rhythm. 2020;17:1609–20.

    Article  PubMed  Google Scholar 

  85. Bhaskaran A, Tung R, Stevenson WG, Kumar S. Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches. Heart Lung Circ. 2019;28:84–101.

    Article  PubMed  Google Scholar 

  86. Romero J, Diaz JC, Hayase J, Dave RH, Bradfield JS, Shivkumar K. Intramyocardial radiofrequency ablation of ventricular arrhythmias using intracoronary wire mapping and a coronary reentry system: description of a novel technique. HeartRhythm Case Rep. 2018;4:285–92.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Futyma P, Ciapala K, Gluszczyk R, Sander J, Futyma M, Kulakowski P. Bipolar ablation of refractory atrial and ventricular arrhythmias: importance of temperature values of intracardiac return electrodes. J Cardiovasc Electrophysiol. 2019;30:1718–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Enriquez.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattel, S., Enriquez, A.D. Contemporary approach to catheter ablation of ventricular tachycardia in nonischemic cardiomyopathy. J Interv Card Electrophysiol 66, 793–805 (2023). https://doi.org/10.1007/s10840-022-01363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01363-1

Keywords

Navigation