Skip to main content
Log in

Effect of catheter ablation on the hemodynamics of the left atrium

Hemodynamics of ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

This study aims to evaluate the impact of catheter ablation for atrial fibrillation (AF) on left atrial (LA) flow dynamics and geometrical changes.

Methods

This exploratory study included computational flow simulations from 10 patients who underwent catheter ablation for AF. Complete cardiac cycle dataset was simulated before and after ablation using computational fluid dynamics. The study main endpoints were the changes in LA volume, LA velocity, LA wall shear stress (WSS), circulation (Γ), vorticity, pulmonary vein (PV) ostia area, and LA vortices before and after ablation.

Results

There was an average decrease in LA volume (11.58 ± 15.17%) and PV ostia area (16.6 ± 21.41%) after ablation. A non-uniform trend of velocity and WSS changes were observed after ablation. Compared with pre-ablation, 4 patients exhibited lower velocities, WSS distributions, and a decreased Γ (> 8.5%), while 6 developed higher velocities and WSS distributions. These geometrical changes dictated different flow mixing in the LA and distinct vortex patterns, characterized by different spinning velocities, vorticities, and rotational directions. Regions with q-criterion > 0 were found to be dominant in the LA, indicating prevalent rotational vortex structures.

Conclusion

Catheter ablation for AF induced different geometrical changes on the LA and the PVs, therefore influencing flow mixing and vortex patterns in the LA, in addition to overall velocity and WSS distribution. Further exploration of the impact of catheter ablation on intracardiac flow dynamics is warranted to discern patterns that may correlate with clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LA:

Left atrium

PV:

Pulmonary veins

AF:

Atrial fibrillation

WSS:

Wall shear stress

CFD:

Computational fluid dynamics

LAA:

Left atrial appendage

Γ:

Circulation

References

  1. Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ Res. 2020;127:4–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andrade JG, Wazni OM, Kuniss M, Hawkins NM, Deyell MW, Chierchia G-B, Nissen S, Verma A, Wells GA, Turgeon RD. Cryoballoon ablation as initial treatment for atrial fibrillation: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78:914–30.

    Article  PubMed  Google Scholar 

  3. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, Fetsch T, van Gelder IC, Haase D, Haegeli LM. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305–16.

    Article  PubMed  Google Scholar 

  4. Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, Williams CJ, Sledge I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ: Arrhythmia Electrophysiol. 2009;2:349–61.

    CAS  Google Scholar 

  5. Cosedis Nielsen J, Johannessen A, Raatikainen P, Hindricks G, Walfridsson H, Kongstad O, Pehrson S, Englund A, Hartikainen J, Mortensen LS. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587–95.

    Article  PubMed  Google Scholar 

  6. Morillo CA, Verma A, Connolly SJ, Kuck KH, Nair GM, Champagne J, Sterns LD, Beresh H, Healey JS, Natale A. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 2014;311:692–700.

    Article  CAS  PubMed  Google Scholar 

  7. Wazni OM, Marrouche NF, Martin DO, Verma A, Bhargava M, Saliba W, Bash D, Schweikert R, Brachmann J, Gunther J. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634–40.

    Article  CAS  PubMed  Google Scholar 

  8. Packer DL, Piccini JP, Monahan KH, Al-Khalidi HR, Silverstein AP, Noseworthy PA, Poole JE, Bahnson TD, Lee KL, Mark DB. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation. 2021;143:1377–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417–27.

    Article  PubMed  Google Scholar 

  10. Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex—an early predictor of cardiovascular outcome? Nat Rev Cardiol. 2014;11:545–53.

    Article  PubMed  Google Scholar 

  11. Vanderheyden M, Coethals M, Ancuera I, Nellens P, Andries E, Brugada J, Brugada P. Hemodynamic deterioration following radiofrequency ablation of the atrioventricular conduction system. Pacing Clin Electrophysiol. 1997;20:2422–8.

    Article  CAS  PubMed  Google Scholar 

  12. Park J-W, Yu HT, Kim T-H, Uhm J-S, Joung B, Lee M-H, Hwang C, Pak H-N. Atrial fibrillation catheter ablation increases the left atrial pressure. Cir Arrhythmia Electrophysiol. 2019;12:e007073.

    Article  Google Scholar 

  13. Kim YG, Shim J, Oh S-K, Park H-S, Lee K-N, Hwang SH, Choi J-I, Kim Y-H. Different responses of left atrium and left atrial appendage to radiofrequency catheter ablation of atrial fibrillation: a follow up MRI study. Sci Rep. 2018;8:1–9.

    Google Scholar 

  14. Reddy YN, El Sabbagh A, Packer D, Nishimura RA. Evaluation of shortness of breath after atrial fibrillation ablation—Is there a stiff left atrium? Heart Rhythm. 2018;15:930–5.

    Article  PubMed  Google Scholar 

  15. Gibson DN, Di Biase L, Mohanty P, Patel JD, Bai R, Sanchez J, Burkhardt JD, Heywood JT, Johnson AD, Rubenson DS. Stiff left atrial syndrome after catheter ablation for atrial fibrillation: clinical characterization, prevalence, and predictors. Heart Rhythm. 2011;8:1364–71.

    Article  PubMed  Google Scholar 

  16. Reant P, Lafitte S, Jaïs P, Serri K, Weerasooriya R, Hocini M, Pillois X, Clementy J, Haïssaguerre M, Roudaut R. Reverse remodeling of the left cardiac chambers after catheter ablation after 1 year in a series of patients with isolated atrial fibrillation. Circulation. 2005;112:2896–903.

    Article  PubMed  Google Scholar 

  17. Fiala M, Wichterle D, Bulková V, Škňouřil L, Nevřalová R, Toman O, Dorda M, Januška J, Špinar J. A prospective evaluation of haemodynamics, functional status, and quality of life after radiofrequency catheter ablation of long-standing persistent atrial fibrillation. Europace. 2014;16:15–25.

    Article  PubMed  Google Scholar 

  18. Kuppahally SS, Akoum N, Badger TJ, Burgon NS, Haslam T, Kholmovski E, Macleod R, McGann C, Marrouche NF. Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging. Am Heart J. 2010;160:877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kohli K, Wei ZA, Sadri V, Netto T, Lisko JC, Greenbaum AB, Babaliaros V, Oshinski JN, Yoganathan AP. A simplified in silico model of left ventricular outflow in patients after transcatheter mitral valve replacement with anterior leaflet laceration. Ann Biomed Eng. 2021;49:1449–61.

    Article  PubMed  Google Scholar 

  20. Bosi GM, Cook A, Rai R, Menezes LJ, Schievano S, Torii R, Burriesci GB. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med. 2018;5:34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trusty PM, Wei ZA, Fogel MA, Maher K, Deshpande SR, Yoganathan AP. Computational Modeling of a right-sided Fontan assist device: effectiveness across patient anatomies and cannulations. J Biomech. 2020;109:109917.

    Article  PubMed  Google Scholar 

  22. Nishimura RA, Abel MD, Hatle LK, Tajik AJ. Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Eff Differ Load Cond Circ. 1990;81:1488–97.

    CAS  Google Scholar 

  23. Ku DN. Blood flow in arteries. Annu Rev Fluid Mech. 1997;29:399–434.

    Article  Google Scholar 

  24. Hatoum H, Moore BL, Dasi LP. On the significance of systolic flow waveform on aortic valve energy loss. Ann Biomed Eng. 2018;46:2102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Writing Committee M, Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, O’Gara PT, Rigolin VH, Sundt TM 3rd, Thompson A, Toly C. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;77:450–500.

    Article  Google Scholar 

  26. Dasi L, Ge L, Simon H, Sotiropoulos F, Yoganathan A. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Physics of Fluids. 2007;19:067105.

    Article  Google Scholar 

  27. Hunt J, Wray A, Moin P. Eddies, stream, and convergence zones in turbulent flows. Proceeding of the summer program in center for turbulence research. 1988:193–208

  28. Xiong B, Li D, Wang J, Gyawali L, Jing J, Su L. The effect of catheter ablation on left atrial size and function for patients with atrial fibrillation: an updated meta-analysis. PLoS One. 2015;10:e0129274.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gosselink AM, Crijns HJ, Hamer HP, Hillege H, Lie KI. Changes in left and right atrial size after cardioversion of atrial fibrillation: role of mitral valve disease. J Am Coll Cardiol. 1993;22:1666–72.

    Article  CAS  PubMed  Google Scholar 

  30. Zipes DP. Atrial fibrillation: a tachycardia-induced atrial cardiomyopathy. Circulation. 1997;95:562–4.

    Article  CAS  PubMed  Google Scholar 

  31. Wylie JV Jr, Peters DC, Essebag V, Manning WJ, Josephson ME, Hauser TH. Left atrial function and scar after catheter ablation of atrial fibrillation. Heart Rhythm. 2008;5:656–62.

    Article  PubMed  Google Scholar 

  32. Lemola K, Sneider M, Desjardins B, Case I, Chugh A, Hall B, Cheung P, Good E, Han J, Tamirisa K. Effects of left atrial ablation of atrial fibrillation on size of the left atrium and pulmonary veins. Heart Rhythm. 2004;1:576–81.

    Article  PubMed  Google Scholar 

  33. Kohari M, Zado E, Marchlinski FE, Callans DJ, Han Y. Left atrial volume best predicts recurrence after catheter ablation in patients with persistent and longstanding persistent atrial fibrillation. Pacing Clin Electrophysiol. 2014;37:422–9.

    Article  PubMed  Google Scholar 

  34. Fender EA, Widmer RJ, Hodge DO, Cooper GM, Monahan KH, Peterson LA, Holmes DR Jr, Packer DL. Severe pulmonary vein stenosis resulting from ablation for atrial fibrillation: presentation, management, and clinical outcomes. Circulation. 2016;134:1812–21.

    Article  CAS  PubMed  Google Scholar 

  35. You L, Yao L, Zhou B, Jin L, Yin H, Wu J, Yin G, Yang Y, Zhang C, Liu Y. Effects of different ablation strategies on long-term left atrial function in patients with paroxysmal atrial fibrillation: a single-blind randomized controlled trial. Sci Rep. 2019;9:1–10.

    Article  Google Scholar 

  36. Dillon-Murphy D, Marlevi D, Ruijsink B, Qureshi A, Chubb H, Kerfoot E, O’Neill M, Nordsletten D, Aslanidi O, De Vecchi A. Modeling left atrial flow, energy, blood heating distribution in response to catheter ablation therapy. Front Physiol. 2018;9:1757.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Compier MG, Tops LF, Braun J, Zeppenfeld K, Klautz RJ, Schalij MJ, Trines SA. Limited left atrial surgical ablation effectively treats atrial fibrillation but decreases left atrial function. EP Europace. 2017;19:560–7.

    Google Scholar 

  38. Kim HW, Moon MH, Jo KH, Song H, Lee JW. Left atrial and left ventricular diastolic function after the maze procedure for atrial fibrillation in mitral valve disease: degenerative versus rheumatic. Indian Journal of Surgery. 2015;77:7–15.

    Article  PubMed  Google Scholar 

  39. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15:665–73.

    Article  CAS  PubMed  Google Scholar 

  40. Asbury CL, Ruberti JW, Bluth EI, Peattie RA. Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann Biomed Eng. 1995;23:29–39.

    Article  CAS  PubMed  Google Scholar 

  41. Brum J, Bernal M, Barrere N, L’Her A, Cabeza C, Negreira C. Vortex dynamics in compliant stenotic aortic models using ultrasonic particle imaging velocimetry. Proceed Meet Acoust ICU. 2019;38:020010.

    Article  Google Scholar 

  42. Geoghegan P, Buchmann N, Soria J, Jermy MC. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp Fluids. 2013;54:1–19.

    Article  Google Scholar 

  43. Denier JP, Hall P. The effect of wall compliance on the Görtler vortex instability. Phys Fluids A. 1991;3:2000–2.

    Article  Google Scholar 

  44. Pedrizzetti G, Domenichini F. Nature optimizes the swirling flow in the human left ventricle. Physical review letters. 2005;95:108101.

    Article  PubMed  Google Scholar 

  45. Kundu PK, Cohen IM. Fluid mechanics. Elsevier. 2nd edition. 2004

  46. Pal P, Zhang Z, Lin BA, Dione D, Sinusas AJ, Sampath S. Flow vortex quantification in the left atrium. J Cardiovasc Magn Reson. 2012;14:1–2.

    Article  Google Scholar 

  47. Walker J, Smith CR, Cerra A, Doligalski T. The impact of a vortex ring on a wall. J Fluid Mech. 1987;181:99–140.

    Article  CAS  Google Scholar 

  48. Ersoy S, Walker J. The boundary layer due to a three-dimensional vortex loop. J Fluid Mech. 1987;185:569–98.

    Article  Google Scholar 

  49. Ersoy S, Walker J. Flow induced at a wall by a vortex pair. AIAA J. 1986;24:1597–605.

    Article  Google Scholar 

  50. Doligalski T, Walker J. The boundary layer induced by a convected two-dimensional vortex. J Fluid Mech. 1984;139:1–28.

    Article  Google Scholar 

  51. Doligalski T, Smith C, Walker J. Vortex interactions with walls. Annu Rev Fluid Mech. 1994;26:573–616.

    Article  Google Scholar 

  52. Chan K-L. Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Ann Intern Med. 1998;128:639–47.

    Article  Google Scholar 

  53. Goldman ME, Pearce LA, Hart RG, Zabalgoitia M, Asinger RW, Safford R, Halperin JL, Investigators SPiAF. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] study). J Am Soc Echocardiogr. 1999;12:1080–7.

    Article  CAS  PubMed  Google Scholar 

  54. Fatkin D, Kelly RP, Feneley MP. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol. 1994;23:961–9.

    Article  CAS  PubMed  Google Scholar 

  55. Fluckiger JU, Goldberger JJ, Lee DC, Ng J, Lee R, Goyal A, Markl M. Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and Pre-and Postintervention atrial fibrillation on atrial hemodynamics. J Magn Reson Imaging. 2013;38:580–7.

    Article  PubMed  Google Scholar 

  56. Fyrenius A, Wigström L, Ebbers T, Karlsson M, Engvall J, Bolger AF. Three dimensional flow in the human left atrium. Heart. 2001;86:448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137:263–72.

    Article  PubMed  Google Scholar 

  58. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Investigators SPiAFI. Hart RG (1998) Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. J Am Coll Cardiol. 1998;31:1622–6.

    Article  CAS  PubMed  Google Scholar 

  59. Bellhouse B. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res. 1972;6:199–210.

    Article  CAS  PubMed  Google Scholar 

  60. Kilner PJ, Yang G-Z, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.

    Article  CAS  PubMed  Google Scholar 

  61. García-Villalba M, Rossini L, Gonzalo A, Vigneault D, Martinez-Legazpi P, Durán E,  Flores O et al. Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Front Physiol. 2021:49.

  62. Feng L, Gao H, Griffith B, Niederer S, Luo X. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. Int J Numer Methods Biomed Eng. 2019;35:e3254.

    Article  Google Scholar 

  63. García-Isla G, Olivares AL, Silva E, Nuñez-Garcia M, Butakoff C, Sanchez-Quintana D, Morales HG, Freixa X, Noailly J, De Potter T. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int J Numer Methods Biomed Eng. 2018;34:e3100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Hatoum.

Ethics declarations

Ethics approval

The Institutional Review Boards (IRB) at Mayo Clinic and Michigan Technological University approved the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Summary of patients’ ablation characteristics (DOCX 16 KB)

10840_2022_1191_MOESM2_ESM.docx

Supplementary file2 Summary of patients' characteristics includingbody mass index (BMI), hypertension (HT), and diabetes mellitus (DM). Patientswith a BMI of 30 or greater are considered obese (DOCX 13 KB)

10840_2022_1191_MOESM3_ESM.docx

Supplementary file3 Variation in averagedvelocity at a selected location in the LA with mesh resolution refinement for asample representative patient. Seven meshes were evaluated with element edgelengths ranging from 0.8 to 2.0 mm (DOCX 13 KB)

10840_2022_1191_MOESM4_ESM.docx

Supplementary file4 Comparison of velocity in the PVs at the D waveand that obtained from the CFD simulations. PV denotes pulmonary veins (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogl, B.J., Shaer, A.E., Van Zyl, M. et al. Effect of catheter ablation on the hemodynamics of the left atrium. J Interv Card Electrophysiol 65, 83–96 (2022). https://doi.org/10.1007/s10840-022-01191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01191-3

Keywords

Navigation