Skip to main content
Log in

Gross anatomic relationship between the human left atrial appendage and the left ventricular summit region: implications for catheter ablation of ventricular arrhythmias originating from the left ventricular summit

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

The left ventricular summit (LVS) is a source of difficult-to-treat arrhythmias because of anatomical limitations. The aim of this study was to perform detailed research of the left atrial appendage (LAA) anatomy of cadaveric hearts to analyze their complex anatomy and coverage of the LVS.

Methods and results

Eighty human formalin fixed hearts (mean age 44.4 ± 15.5, 27.5% females) were investigated. Each LAA size, type, and its relationship to the LVS were analyzed, as well as possible access sites for mapping/ablating electrode. Four types of LAA were observed over two LVS sites that are either accessible or not. The highest coverage over an inaccessible LVS area was observed in the Broccoli type, followed by the Windsock then the Chicken Wing and finally the Cactus types; over the accessible area of the LVS was observed in the Windsock, then in the Chicken Wing, then in the Cactus, and finally in the Broccoli types. The attainable coverage for electrode access is diminished from 25 to 65% because of the complex pectinate muscles and sharp angles. The highest density of the LAA floor made by pectinate muscles can be found in the Broccoli type (p < 0.005), while the Chicken Wing had the highest number of paper-thin-like pouches.

Conclusions

The LAA appears to be a promising entry for ablation-qualified patients with the LV summit originate arrhythmias. The complex internal structure of the LAA may complicate ablation procedures. More prominent appendages are promising in more extensive mapping areas over the LVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BSA:

Body surface area

Cx:

Circumflex branch

Dg:

Diagonal branch

EAT:

Epicardial adipose tissue

GCV:

Great cardiac vein

LA:

Left atrium

LAA:

Left atrial appendage

LAD:

Left anterior descending artery

LCA:

Left coronary artery

LV:

Left ventricle

LVS:

Left ventricular summit

OM:

Obtuse marginal branch

PT:

Pulmonary trunk

RFCA:

Radiofrequency catheter ablation

SP:

Septal perforator

VA:

Ventricular arrhythmia

References

  1. Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999;82(5):547–54. https://doi.org/10.1136/hrt.82.5.547.PMID:10525506;PMCID:PMC1760793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Regazzoli D, Ancona F, Trevisi N, Guarracini F, Radinovic A, Oppizzi M, Agricola E, Marzi A, Sora NC, Della Bella P, Mazzone P. Left atrial appendage: physiology, pathology, and role as a therapeutic target. Biomed Res Int. 2015;2015:205013. doi: https://doi.org/10.1155/2015/205013. Epub 2015 Jul 7. PMID: 26236716; PMCID: PMC4508372.

  3. Hołda MK, Koziej M, Wszołek K, Pawlik W, Krawczyk-Ożóg A, Sorysz D, Łoboda P, Kuźma K, Kuniewicz M, Lelakowski J, Dudek D, Klimek-Piotrowska W. Left atrial accessory appendages, diverticula, and left-sided septal pouch in multi-slice computed tomography. Association with atrial fibrillation and cerebrovascular accidents. Kardiologia Polska 2018; 76, 3: 510–519; DOI: https://doi.org/10.5603/KP.a2018.0001

  4. Saygi S. Atrial fibrillation and the role of LAA in pathophysiology and clinical outcomes? J Atr Fibrillation. 2012;5(3):480. https://doi.org/10.4022/jafib.480.PMID:28496767;PMCID:PMC5153207.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuniewicz M, Baszko A, Ali D, Karkowski G, Loukas M, Walocha JA, Hołda MK. Left ventricular summit-concept, anatomical structure and clinical significance. Diagnostics (Basel). 2021;11(8):1423. https://doi.org/10.3390/diagnostics11081423.PMID:34441357;PMCID:PMC8393416.

    Article  PubMed  Google Scholar 

  6. Yamada T, Doppalapudi H, Murakami Y, Yoshida Y, Yoshida N, Okada T, Tsuboi N, Inden Y, Murohara T, Epstein AE, Plumb VJ, Singh SP, Neal Kay G. Idiopathic ventricular arrhythmias originating from the aortic root prevalence, electrocardiographic and electrophysiologic characteristics, and results of radiofrequency catheter ablation. 2008; 52(2) 139–147. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2008.03.040

  7. Chung FP, Lin CY, Shirai Y, Futyma P, Santangeli P, Lin YJ, Chang SL, Lo LW, Hu YF, Chang HY, Marchlinski FE, Chen SA. Outcomes of catheter ablation of ventricular arrhythmia originating from the left ventricular summit: a multicenter study. Heart Rhythm. 2020;17(7):1077–83. https://doi.org/10.1016/j.hrthm.2020.02.027 (Epub 2020 Feb 28 PMID: 32113894).

    Article  PubMed  Google Scholar 

  8. Kuniewicz M, Krupiński M, Gosnell M, Budnicka K, Jakob N, Karkowski G, Urbańczyk-Zawadzka M, Lelakowski J, Walocha J. Applicability of computed tomography preoperative assessment of the LAA in LV summit ablations. J Interv Card Electrophysiol. 2021 Aug;61(2):357–363. doi: https://doi.org/10.1007/s10840-020-00817-8. Epub 2020 Jul 14. PMID: 32666410; PMCID: PMC8324620.

  9. Sosa E, Scanavacca M, d’Avila A. Catheter ablation of the left ventricular outflow tract tachycardia from the left atrium. J Interv Card Electrophysiol. 2002;7:61–5.

    Article  PubMed  Google Scholar 

  10. Benhayon D, Cogan J, Young M. Left atrial appendage as a vantage point for mapping and ablating premature ventricular contractions originating in the epicardial left ventricular summit. 2018; 6(6):1124-1127; https://doi.org/10.1002/ccr3.1525

  11. Yakubov A, Salayev O, Hamrayev R, Sultankhonov S. A case of successful ablation of ventricular tachycardia focus in the left ventricular summit through the left atrial appendage: a case report. European Heart Journal - Case Reports. 2018;2(4):1–5. https://doi.org/10.1093/ehjcr/yty110.

    Article  Google Scholar 

  12. Igarashi, M., Nogami, A., Fukamizu, S., Sekiguchi, Y., Nitta, J., Sakamoto, N., … Ieda, M. (2020). Acute and long-term results of bipolar radiofrequency catheter ablation of refractory ventricular arrhythmias of deep intramural origin. Heart Rhythm,

  13. Whiteman, S.; Saker, E.; Courant, E.; Salandy, S.; Gielecki, J.; Zurada, A.; Loukas, M. An anatomical review of the left atrium, Translational Research in Anatomy, 2019, Volume 17, 100052, ISSN 2214-854X, https://doi.org/10.1016/j.tria.2019.100052

  14. Beigel R, Wunderlich NC, Ho SY, Arsanjani R, Siegel RJ. The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc Imaging. 2014;7(12):1251–65. https://doi.org/10.1016/j.jcmg.2014.08.009 (PMID: 25496544).

    Article  PubMed  Google Scholar 

  15. Su P, McCarthy KP, Ho SY. Occluding the left atrial appendage: anatomical considerations. Heart. 2008;94:1166–70. https://doi.org/10.1136/hrt.2006.111989.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Di Biase L, Horton RP, et al. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J Cardiovasc Electrophysiol. 2010;21(9):973–82. https://doi.org/10.1111/j.1540-8167.2010.01814.x,indexedinPubmed:20550614.

    Article  PubMed  Google Scholar 

  17. Korhonen M, Parkkonen J, Hedman M, Muuronen A, Onatsu J, Mustonen P, Vanninen R, Taina M. Morphological features of the left atrial appendage in consecutive coronary computed tomography angiography patients with and without atrial fibrillation. PLoS ONE. 2017;12(3): e0173703. https://doi.org/10.1371/journal.pone.0173703.PMID:28288200;PMCID:PMC5348027.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kimura T, Takatsuki S, Inagawa K, Katsumata Y, Nishiyama T, Nishiyama N, Fukumoto K, Aizawa Y, Tanimoto Y, Tanimoto K, Jinzaki M, Fukuda K. Anatomical characteristics of the left atrial appendage in cardiogenic stroke with low CHADS2 scores. Heart Rhythm 2013;10:921–925.17(9), 1500–1507.

  19. Wu L, Liang E, Fan S, Zheng L, Du Z, Liu S, Hu F, Fan X, Chen G, Ding L, Yao Y. Relation of left atrial appendage morphology determined by computed tomography to prior stroke or to increased risk of stroke in patients with atrial fibrillation. Am J Cardiol. 2019;123(8):1283–6. https://doi.org/10.1016/j.amjcard.2019.01.024 (Epub 2019 Jan 23 PMID: 30709597).

    Article  PubMed  Google Scholar 

  20. Wang K, Ho SY, Gibson DG, Anderson RH. Architecture of atrial musculature in humans. Br Heart J. 1995;73(6):559–65. https://doi.org/10.1136/hrt.73.6.559.PMID:7626357;PMCID:PMC483920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho SY, Cabrera JA, Sanchez-Quintana D. Left atrial anatomy revisited. Circ Arrhythm Electrophysiol. 2012;5(1):220–8. https://doi.org/10.1161/CIRCEP.111.962720,indexedinPubmed:22334429.

    Article  PubMed  Google Scholar 

  22. Obel, O. A., Avila, A., Neuzil, P., Saad, E. B., Ruskin, J. N., & Reddy, V. Y. (2006). Ablation of left ventricular epicardial outflow tract tachycardia from the distal great cardiac vein. Journal of the American College of Cardiology, 48(9), 6–10. https://doi.org/10.1016/j.jacc.2006.06.006

  23. Di Biase L, Santangeli P, Anselmino M, Mohanty P, Salvetti I, Gili S, Horton R, Sanchez JE, Bai R, Mohanty S, Pump A, Cereceda Brantes M, Gallinghouse GJ, Burkhardt JD, Cesarani F, Scaglione M, Natale A, Gaita F. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012;60(6):531–8. https://doi.org/10.1016/j.jacc.2012.04.032 (PMID: 22858289).

    Article  PubMed  Google Scholar 

  24. Lupercio F, Carlos Ruiz J, Briceno DF, et al. Left atrial appendage morphology assessment for risk stratification of embolic stroke in patients with atrial fibrillation: a meta-analysis. Heart Rhythm. 2016;13(7):1402–9. https://doi.org/10.1016/j.hrthm.2016.03.042.

    Article  PubMed  Google Scholar 

  25. Kimura T, Takatsuki S, Inagawa K, Katsumata Y, Nishiyama T, Nishiyama N, Fukumoto K, Aizawa Y, Tanimoto Y, Tanimoto K, Jinzaki M, Fukuda K. Anatomical characteristics of the left atrial appendage in cardiogenic stroke with low CHADS2 scores. Heart Rhythm. 2013;10(6):921–5. https://doi.org/10.1016/j.hrthm.2013.01.036 (Epub 2013 Feb 4 PMID: 23384894).

    Article  PubMed  Google Scholar 

  26. Enriquez A, Malavassi F, Saenz LC, Supple G, Santangeli P, Marchlinski FE, Garcia FC. How to map and ablate left ventricular summit arrhythmias. Heart Rhythm. 2017;14(1):141–8.

    Article  PubMed  Google Scholar 

  27. Altmann DR, Knecht S, Sticherling C, Ammann P, Osswald S, Kühne M. Ventricular tachycardia originating from the “ Bermuda Triangle.” Cardiovascular Medicine. 2013;16(7–8):208–10.

    Google Scholar 

  28. Żabówka A, Hołda J, Strona M, Koziej M, Krawczyk-Ożóg A, Jasińska KA, Kuniewicz M, Lelakowski J, Hołda MK. Morphology of the Vieussens valve and its imaging in cardiac multislice computed tomography. J Cardiovasc Electrophysiol. 2019;30(8):1325–9. https://doi.org/10.1111/jce.14018 (Epub 2019 Jun 18 PMID: 31187551).

    Article  PubMed  Google Scholar 

  29. Mazur M, Żabówka A, Bolechała F, Kopacz P, Klimek-Piotrowska W, Hołda MK. Variations and angulation of the coronary sinus tributaries: implications for left ventricular pacing. Pacing Clin Electrophysiol. 2019;42(4):423–30. https://doi.org/10.1111/pace.13618 (Epub 2019 Feb 21 PMID: 30740749).

    Article  PubMed  Google Scholar 

  30. Singh M, Edwards WD, Holmes DR Jr, Tajil AJ, Nishimura RA. Anatomy of the first septal perforating artery: a study with implications for ablation therapy for hypertrophic cardiomyopathy. Mayo Clin Proc. 2001;76(8):799–802 (PMID: 11499819).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.K.: concept and design, anatomical dissections, photography, data collection, writing manuscript. B.K., D.M., J.N., C.N., D.R., G.M., W.T.: anatomical dissections, photography, data collection, English language support. H.D.: revising article critically for important intellectual content, English language support. M.H.: providing important intellectual content. J.W.: revising article critically for important intellectual content, final approval of submitted version. All authors have approved the final article.

Corresponding author

Correspondence to M. Kuniewicz.

Ethics declarations

Ethics approval

This study was conducted at the Department of Anatomy of the Jagiellonian University Medical College and was approved by the Bioethical Committee of the Jagiellonian University in Cracow, Poland (1072.6120.131.2018). The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. The methods were carried out in accordance with the approved guidelines.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniewicz, M., Budnicka, K., Dusza, M. et al. Gross anatomic relationship between the human left atrial appendage and the left ventricular summit region: implications for catheter ablation of ventricular arrhythmias originating from the left ventricular summit. J Interv Card Electrophysiol 66, 301–310 (2023). https://doi.org/10.1007/s10840-022-01172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01172-6

Keywords

Navigation