Skip to main content

Advertisement

Log in

Respiratory variability of sinus node activation in humans: insights from ultra-high-density mapping

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Experimental data suggest that shifts in the site of origin of the sinus node (SN) correlate with changes in heart rate and P wave morphology. The direct visualization of the effect of respiration on SN electrical activation has not yet been reported in humans. We aimed to measure the respiratory shifting of the SN activation using ultra-high-density mapping.

Methods

Sequential right atrial (RA) activation mapping during sinus rhythm (SR) was performed. Three maps were acquired for each patient: basal end-expiratory (Ex), end-inspiratory (Ins), and end-expiratory under isoproterenol (Iso). The earliest activation site (EAS) was defined as the earliest unipolar electrograms (EGM) with a QS pattern and was localized with respect to the ostium of the superior vena cava (SVC; negative values if EAS inside the SVC).

Results

In 20 patients, 49 maps in SR were acquired (20 Ex, 19 Ins, and 10 Iso). Expiratory (944 ± 227 ms) and inspiratory (946 ± 227 ms) SR cycle lengths were similar, but shortened under isoproterenol (752 ± 302 ms). Activation was unicentric in 33 maps and multicentric in 16: 4 during Ins, 10 during Ex, and 2 Iso. EAS location was significantly more cranial in expiration than in inspiration (0.27 ± 12.1 vs 5 ± 11.51 mm, p = 0.01). Iso infusion tends to induce a supplemental cranial shift (−4.07 ± 15.83 vs 0.27 ± 12.7 mm, p = 0.21). EAS were found in SVC in 22.7% of maps (30% Ex, 21% Ins, and 8% Iso).

Conclusion

Inspiration induces a significant caudal shift of the earliest sinus activation. In one-third of the cases, sinus rhythm earliest activation is inside the SVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EAS:

Earliest activation site

EGM:

Electrogram

Ex:

Basal end-expiration

Ins:

Basal end-inspiration

Iso:

End-expiratory under Isoproterenol

RA:

Right atrium

RF:

Radiofrequency

RSA:

Respiratory sinus arrhythmia

SBO:

Sinus break-out

SN:

Sinus node

SR:

Sinus rhythm

SVC:

Superior vena cava

UHD:

Ultra-high-density

References

  1. Ho SY, Sánchez-Quintana D. Anatomy and pathology of the sinus node. J Interv Card Electrophysiol Int J Arrhythm Pacing. Jun. 2016;46(1):3–8. https://doi.org/10.1007/s10840-015-0049-6.

    Article  Google Scholar 

  2. Stiles MK, et al. High-density mapping of the sinus node in humans: role of preferential pathways and the effect of remodeling. J Cardiovasc Electrophysiol. May 2010;21(5):532–9. https://doi.org/10.1111/j.1540-8167.2009.01644.x.

    Article  PubMed  Google Scholar 

  3. Murphy C, Lazzara R. Current concepts of anatomy and electrophysiology of the sinus node. J Interv Card Electrophysiol Int J Arrhythm Pacing. Jun. 2016;46(1):9–18. https://doi.org/10.1007/s10840-016-0137-2.

    Article  Google Scholar 

  4. Betts TR, Roberts PR, Ho SY, Morgan JM. High density endocardial mapping of shifts in the site of earliest depolarization during sinus rhythm and sinus tachycardia. Pacing Clin Electrophysiol PACE. Apr. 2003;26(4 Pt 1):874–82.

    Article  Google Scholar 

  5. Eckberg DL. The human respiratory gate. J Physiol. Apr. 2003;548(Pt 2):339–52. https://doi.org/10.1113/jphysiol.2002.037192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borgia JF, Nizet PM, Gliner JA, Horvath SM. Wandering atrial pacemaker associated with repetitive respiratory strain. Cardiology. 1982;69(2):70–3.

    Article  CAS  Google Scholar 

  7. Nizet PM, Borgi JF, Horvath SM. Wandering atrial pacemaker (prevalence in French hornists). J Electrocardiol. 1976;9(1):51–2.

    Article  CAS  Google Scholar 

  8. Dick TE, et al. Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog Brain Res. 2014;209:191–205. https://doi.org/10.1016/B978-0-444-63274-6.00010-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. D. G. Laţcu et al., “Selection of critical isthmus in scar-related atrial tachycardia using a new automated ultrahigh resolution mapping system,” Circ. Arrhythm. Electrophysiol., vol. 10, no. 1, Jan. 2017, https://doi.org/10.1161/CIRCEP.116.004510.

  10. Higa S, Tai CT, Lin YJ, Liu TY, Lee PC, Huang JL, et al. Focal atrial tachycardia: new insight from noncontact mapping and catheter ablation. Circulation. Jan. 2004;109(1):84–91. https://doi.org/10.1161/01.CIR.0000109481.73788.2E.

    Article  PubMed  Google Scholar 

  11. Bollmann A, Hilbert S, John S, Kosiuk J, Hindricks G. Insights from preclinical ultra high-density electroanatomical sinus node mapping. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Groups Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. Mar. 2015;17(3):489–94. https://doi.org/10.1093/europace/euu276.

    Article  Google Scholar 

  12. Callans DJ, Ren JF, Schwartzman D, Gottlieb CD, Chaudhry FA, Marchlinski FE. Narrowing of the superior vena cava-right atrium junction during radiofrequency catheter ablation for inappropriate sinus tachycardia: analysis with intracardiac echocardiography. J Am Coll Cardiol. May 1999;33(6):1667–70.

    Article  CAS  Google Scholar 

  13. B. Pathik et al., “New insights into an old arrhythmia: high-resolution mapping demonstrates conduction and substrate variability in right atrial macro–re-entrant tachycardia,” JACC Clin. Electrophysiol., p. 370, May 2017, https://doi.org/10.1016/j.jacep.2017.01.019.

  14. Schuessler RB, Boineau JP, Bromberg BI. Origin of the sinus impulse. J Cardiovasc Electrophysiol. Mar. 1996;7(3):263–74.

    Article  CAS  Google Scholar 

  15. Fedorov VV, Glukhov AV, Chang R. Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol Heart Circ Physiol. May 2012;302(9):H1773–83. https://doi.org/10.1152/ajpheart.00892.2011.

    Article  CAS  PubMed  Google Scholar 

  16. Boineau JP, Canavan TE, Schuessler RB, Cain ME, Corr PB, Cox JL. Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circulation. Jun. 1988;77(6):1221–37.

    Article  CAS  Google Scholar 

  17. Joung B, Hwang HJ, Pak HN, Lee MH, Shen C, Lin SF, et al. Abnormal response of superior sinoatrial node to sympathetic stimulation is a characteristic finding in patients with atrial fibrillation and symptomatic bradycardia. Circ Arrhythm Electrophysiol. Dec. 2011;4(6):799–807. https://doi.org/10.1161/CIRCEP.111.965897.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joung B, Chen P-S. Function and dysfunction of human sinoatrial node. Korean Circ J. May 2015;45(3):184–91. https://doi.org/10.4070/kcj.2015.45.3.184.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Larsen PD, Tzeng YC, Sin PYW, Galletly DC. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol. Nov. 2010;174(1–2):111–8. https://doi.org/10.1016/j.resp.2010.04.021.

    Article  CAS  PubMed  Google Scholar 

  20. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. Feb. 2007;74(2):263–85. https://doi.org/10.1016/j.biopsycho.2005.11.014.

    Article  PubMed  Google Scholar 

  21. Yasuma F, Hayano J-I. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. Feb. 2004;125(2):683–90.

    Article  Google Scholar 

  22. Beda A, Carvalho NC, Güldner A, Koch T, de Abreu MG. Mechanical ventilation during anaesthesia: challenges and opportunities for investigating the respiration-related cardiovascular oscillations. Biomed Tech (Berl). Aug. 2011;56(4):195–206. https://doi.org/10.1515/BMT.2011.015.

    Article  Google Scholar 

  23. Crystal GJ, Salem MR. The Bainbridge and the ‘reverse’ Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. Mar. 2012;114(3):520–32. https://doi.org/10.1213/ANE.0b013e3182312e21.

    Article  CAS  PubMed  Google Scholar 

  24. Masi CM, Hawkley LC, Rickett EM, Cacioppo JT. Respiratory sinus arrhythmia and diseases of aging: obesity, diabetes mellitus, and hypertension. Biol Psychol. Feb. 2007;74(2):212–23. https://doi.org/10.1016/j.biopsycho.2006.07.006.

    Article  PubMed  Google Scholar 

  25. Grassman E, Blomqvist CG. Absence of respiratory sinus arrhythmia: a manifestation of the sick sinus syndrome. Clin Cardiol. Apr. 1983;6(4):151–4.

    Article  CAS  Google Scholar 

  26. Kollai M, Mizsei G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol. May 1990;424:329–42.

    Article  CAS  Google Scholar 

  27. Sánchez-Quintana D, Cabrera JA, Farré J, Climent V, Anderson RH, Ho SY. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart Br Card Soc. Feb. 2005;91(2):189–94. https://doi.org/10.1136/hrt.2003.031542.

    Article  Google Scholar 

  28. N. Li et al., “Redundant and diverse intranodal pacemakers and conduction pathways protect the human sinoatrial node from failure,” Sci. Transl. Med., vol. 9, no. 400, Jul. 2017, https://doi.org/10.1126/scitranslmed.aam5607.

  29. Kholová I, Kautzner J. Morphology of atrial myocardial extensions into human caval veins: a postmortem study in patients with and without atrial fibrillation. Circulation. Aug. 2004;110(5):483–8. https://doi.org/10.1161/01.CIR.0000137117.87589.88.

    Article  PubMed  Google Scholar 

  30. Miyazaki S, Yamao K, Hasegawa K, Ishikawa E, Mukai M, Aoyama D, et al. SVC mapping using an ultra-high resolution 3-dimensional mapping system in patients with and without AF. JACC Clin Electrophysiol. 2019;5(8):958–67. https://doi.org/10.1016/j.jacep.2019.05.024.

    Article  PubMed  Google Scholar 

  31. Yamashita S, Tokuda M, Isogai R, Tokutake K, Yokoyama K, Narui R, et al. Spiral activation of the superior vena cava: the utility of ultra-high-resolution mapping for caval isolation. Heart Rhythm. Feb. 2018;15(2):193–200. https://doi.org/10.1016/j.hrthm.2017.09.035.

    Article  PubMed  Google Scholar 

  32. M. Rodríguez-Mañero et al., “Ablation of inappropriate sinus tachycardia: a systematic review of the literature,” JACC Clin. Electrophysiol., p. 283, Dec. 2016, https://doi.org/10.1016/j.jacep.2016.09.014.

  33. Man KC, Knight B, Tse HF, Pelosi F, Michaud GF, Flemming M, et al. Radiofrequency catheter ablation of inappropriate sinus tachycardia guided by activation mapping. J Am Coll Cardiol. Feb. 2000;35(2):451–7.

    Article  CAS  Google Scholar 

  34. Chen G, et al. Sinus node injury as a result of superior vena cava isolation during catheter ablation for atrial fibrillation and atrial flutter. Pacing Clin Electrophysiol PACE. Feb. 2011;34(2):163–70. https://doi.org/10.1111/j.1540-8159.2010.02903.x.

    Article  CAS  PubMed  Google Scholar 

  35. Ong MG, Tai C-T, Lin Y-J, Lee K-T, Chang S-L, Chen S-A. Sinus node injury as a complication of superior vena cava isolation. J Cardiovasc Electrophysiol. Nov. 2005;16(11):1243–5. https://doi.org/10.1111/j.1540-8167.2005.00274.x.

    Article  PubMed  Google Scholar 

  36. R. D. Stewart, F. Bailliard, A. M. Kelle, C. L. Backer, L. Young, and C. Mavroudis, “Evolving surgical strategy for sinus venosus atrial septal defect: effect on sinus node function and late venous obstruction,” Ann. Thorac. Surg., vol. 84, no. 5, pp. 1651–1655; discussion 1655, Nov. 2007, https://doi.org/10.1016/j.athoracsur.2007.04.130.

  37. I. M. Salman, “Current approaches to quantifying tonic and reflex autonomic outflows controlling cardiovascular function in humans and experimental animals,” Curr. Hypertens. Rep., vol. 17, no. 11, p. 84, Nov. 2015, https://doi.org/10.1007/s11906-015-0597-2.

Download references

Funding

This project received funding from the Scientific Center of Monaco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Garret.

Ethics declarations

Conflict of interest

Dr. Latcu and Dr. Bun have received moderate consulting and lecture fees from Boston Scientific. Other authors: No disclosures.

Ethics approval and consent to participate

This study was approved by the Hospital Ethics Committee. Each patient gave his written consent for the invasive procedure and the study.

Consent for publication

Each patient gave his written consent for the publication of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garret, G., Laţcu, D.G., Bun, S.S. et al. Respiratory variability of sinus node activation in humans: insights from ultra-high-density mapping. J Interv Card Electrophysiol 63, 49–58 (2022). https://doi.org/10.1007/s10840-021-00946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-021-00946-8

Keywords

Navigation