Skip to main content
Log in

Presence of a left common pulmonary vein and pulmonary vein anatomical characteristics as predictors of outcome following cryoballoon ablation for paroxysmal atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary vein (PV) isolation using cryoballoon ablation (CBA) is a common therapy for patients with drug-refractory paroxysmal atrial fibrillation (PAF). However, initial CBA is successful in only 70–80% of patients. The role of an atypical left common PV (LCPV) and PV anatomical indices on CBA outcomes remains unclear.

Methods

We followed 80 patients (age 60.7 ± 9.7, 31 % women) with PAF undergoing CBA for 1-year post-procedure for the development of recurrent atrial arrhythmias (AA). Recurrence was assessed by documented AA on EKG or any form of long-term cardiac rhythm monitoring. The presence of an LCPV and individual PV diameters were evaluated using cardiac CT. Based on the maximum and minimum PV ostial diameters, the eccentricity index (EI), ovality index (OI), and PV ostial area (PVA) were calculated for all the veins. A multivariable Cox-proportional hazard model assessed whether the presence of an LCPV or PV anatomic indices (EI, OI, and PVA) predicted recurrence of AA following CBA.

Results

After 1-year follow-up, 19 (23.7%) participants developed recurrence of AA. On multivariable regression, the presence of an LCPV did not predict the recurrence of AA (p = 0.38). Among the PV anatomical indices, on univariate analysis, only the area of the left inferior PV showed a trend towards predicting recurrence, though this result was not significant on multivariate analysis (p = 0.09).

Conclusions

In patients with PAF, neither the presence of an LCPV nor individual PV anatomical indices predicted recurrence of AA following CBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14:e275–444.

    Article  PubMed  Google Scholar 

  2. Andrade JG, Champagne J, Dubuc M, Deyell MW, Verma A, Macle L, et al. Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation. 2019;140:1779–88.

    Article  PubMed  Google Scholar 

  3. Morillo CA, Verma A, Connolly SJ, Kuck KH, Nair GM, Champagne J, et al. RAAFT-2 Investigators. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 2014;311:692–700.

    Article  CAS  PubMed  Google Scholar 

  4. Cosedis Nielsen J, Johannessen A, Raatikainen P, Hindricks G, Walfridsson H, Kongstad O, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587–95.

    Article  PubMed  Google Scholar 

  5. Kubala M, Hermida JS, Nadji G, Quenum S, Traulle S, Jarry G. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein. Pacing Clin Electrophysiol. 2011;34:837–43.

    Article  Google Scholar 

  6. Sohns C, Sohns JM, Bergau L, Sossalla S, Vollmann D, Lüthje L, et al. Pulmonary vein anatomy predicts freedom from atrial fibrillation using remote magnetic navigation for circumferential pulmonary vein ablation. Europace. 2013;15:1136–42.

    Article  Google Scholar 

  7. Berruezo A, Tamborero D, Mont L, Benito B, Tolosana JM, Sitges M, et al. Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur Heart J. 2007;28:836–41.

    Article  Google Scholar 

  8. Miyazaki S, Kuwahara T, Kobori A, Takahashi Y, Takei A, Sato A, et al. Catheter ablation of atrial fibrillation in patients with valvular heart disease: long-term follow-up results. J Cardiovasc Electrophysiol. 2010;21:1193–8.

    Article  Google Scholar 

  9. Balk EM, Garlitski AC, Alsheikh-Ali AA, Terasawa T, Chung M, Ip S. Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review. J Cardiovasc Electrophysiol. 2010;21:1208–16.

    Article  Google Scholar 

  10. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110:364–7.

    Article  Google Scholar 

  11. Providencia R, Adragao P, de Asmundis C, Chun J, Chierchia G, Defaye P, et al. Impact of body mass index on the outcomes of catheter ablation of atrial fibrillation: a European observational multicenter study. J Am Heart Assoc. 2019;8:e012253.

    Article  PubMed  Google Scholar 

  12. Sorgente A, Chierchia GB, de Asmundis C, Sarkozy A, Namdar M, Capulzini L, et al. Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballoon ablation. Europace. 2011;13:205–12.

    Article  PubMed  Google Scholar 

  13. Schmidt M, Dorwarth U, Straube F, Daccarett M, Rieber J, Wankerl M, et al. Cryoballoon in AF ablation: impact of PV ovality on AF recurrence. Int J Cardiol. 2013;167:114–20.

    Article  PubMed  Google Scholar 

  14. McLellan AJ, Ling LH, Ruggiero D, Wong MC, Walters TE, Nisbet A, et al. Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2014;11:549–56.

    Article  PubMed  Google Scholar 

  15. Xu B, Xing Y, Xu C, Peng F, Sun Y, Wang S, et al. A left common pulmonary vein: anatomical variant predicting good outcomes of repeat catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30:717–26.

    Article  PubMed  Google Scholar 

  16. Kurokawa S, Nagashima K, Watanabe R, Arai M, Wakamatsu Y, Otsuka N, et al. Optimal diameter of the pulmonary vein ostium for second-generation 28-mm cryoballoon ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2020;43:201–9.

    Article  PubMed  Google Scholar 

  17. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15:560–6.

    Article  PubMed  Google Scholar 

  18. Skowerski M, Wozniak-Skowerska I, Hoffmann A, Nowak S, Skowerski T, Sosnowski M, et al. Pulmonary vein anatomy variants as a biomarker of atrial fibrillation - CT angiography evaluation. BMC Cardiovasc Disord. 2018;18:146.

    Article  CAS  PubMed  Google Scholar 

  19. Tekbas G, Gumus H, Onder H, Ekici F, Hamidi C, Tekbas E, et al. Evaluation of pulmonary vein variations and anomalies with 64 slice multi detector computed tomography. Wien Klin Wochenschr. 2012;124:3–10.

    Article  PubMed  Google Scholar 

  20. Kaseno K, Tada H, Koyama K, Jingu M, Hiramatsu S, Yokokawa M, et al. Prevalence and characterization of pulmonary vein variants in patients with atrial fibrillation determined using 3-dimensional computed tomography. Am J Cardiol. 2008;101:1638–42.

    Article  Google Scholar 

  21. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology. 2004;230:824–9.

    Article  Google Scholar 

  22. Istratoaie S, Rosu R, Cismaru G, Vesa SC, Puiu M, Zdrenghea D, et al. The impact of pulmonary vein anatomy on the outcomes of catheter ablation for atrial fibrillation. Medicina (Kaunas). 2019;55:727.

  23. Huang SW, Jin Q, Zhang N, Ling TY, Pan WQ, Lin CJ, et al. Impact of pulmonary vein anatomy on long-term outcome of cryoballoon ablation for atrial fibrillation. Curr Med Sci. 2018;38:259–67.

    Article  Google Scholar 

  24. van der Voort PH, van den Bosch H, Post JC, Meijer A. Determination of the spatial orientation and shape of pulmonary vein ostia by contrast-enhanced magnetic resonance angiography. Europace. 2006;8:1–6.

    Article  Google Scholar 

  25. Wittkampf FH, Vonken EJ, Derksen R, Loh P, Velthuis B, Wever EF, et al. Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation. 2003;107:21–3.

    Article  Google Scholar 

  26. Knecht S, Kuhne M, Altmann D, Ammann P, Schaer B, Osswald S, et al. Anatomical predictors for acute and mid-term success of cryoballoon ablation of atrial fibrillation using the 28 mm balloon. J Cardiovasc Electrophysiol. 2013;24:132–8.

    Article  Google Scholar 

  27. Kajiyama T, Miyazaki S, Matsuda J, Watanabe T, Niida T, Takagi T, et al. Anatomic parameters predicting procedural difficulty and balloon temperature predicting successful applications in individual pulmonary veins during 28-mm second-generation cryoballoon ablation. JACC Clin Electrophysiol. 2017;3:580–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bose.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

The study was approved by the institutional review board for our institution. Since this was a retrospective chart review, no studies or interventions were performed on animals or humans.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, A., Chevli, P.A., Berberian, G. et al. Presence of a left common pulmonary vein and pulmonary vein anatomical characteristics as predictors of outcome following cryoballoon ablation for paroxysmal atrial fibrillation. J Interv Card Electrophysiol 62, 409–417 (2021). https://doi.org/10.1007/s10840-020-00916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-020-00916-6

Keywords

Navigation