Skip to main content
Log in

Vildagliptin reduces myocardial ischemia-induced arrhythmogenesis via modulating inflammatory responses and promoting expression of genes regulating mitochondrial biogenesis in rats with type-II diabetes

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Fatal arrhythmias are one of the main manifestations of ischemic heart disease in diabetic patients. Here, we investigated the effect of pretreatment with vildagliptin on myocardial arrhythmias, inflammatory responses, and expression of genes regulating mitochondrial biogenesis following cardiac ischemic injury in type II diabetic male Wistar rats.

Methods

Chronic diabetes was modeled by a high-fat diet and low-dose streptozotocin method and lasted for 12 weeks. Vildagliptin (6 mg/dl) was orally administered during the last 4 weeks of the diabetic period. Then, rats’ hearts (n = 8/each group) were immediately isolated and transferred to the Langendorff apparatus, in which left anterior descending coronary artery was tightened for 35 min to induce regional ischemia. Electrocardiography was continuously recorded and myocardial arrhythmias were interpreted according to the Lambeth Convention. Inflammatory cytokines in left ventricular samples were measured using ELISA kits, and gene expression was assayed using real-time PCR.

Results

Diabetic groups showed increased incidence and duration of ventricular fibrillation (VF) than controls (P < 0.05). Pretreatment of diabetic rats with vildagliptin resulted in a significant decrease in number, duration, and severity of premature ventricular complexes (PVC), tachycardia (VT), and VF during ischemia, compared to non-treated diabetic group (P < 0.05). Additionally, vildagliptin significantly increased the expression of genes PGC-1α, SIRT-1, and NRF-2 and reduced the levels of myeloperoxidase, creatine kinase release, and myocardial content of TNF-α and IL-1β in nondiabetic and diabetic rats as compared to corresponding controls (P < 0.01–0.05).

Conclusion

Vildagliptin preconditioning reduced the occurrence and severity of fatal ventricular arrhythmias induced by myocardial ischemia in type II diabetic rats through increased activity of mitochondrial biogenesis-regulating genes and reduction of inflammatory reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VF :

Ventricular fibrillation

VT :

Ventricular tachycardia

VB :

Ventricular bigeminy

VS :

Ventricular salvos

VPB :

Single ventricular premature beat

References

  1. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diab. 2015;6:1246–58. https://doi.org/10.4239/wjd.v6.i13.1246.

    Article  Google Scholar 

  2. Saeid F, Aniseh J, Reza B, Manouchehr VS. Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia–reperfusion injury. Eur J Prev Cardiol. 2018;25:1463–81. https://doi.org/10.1177/2047487318756420.

    Article  PubMed  Google Scholar 

  3. Severino P, D’Amato A, Netti L, Pucci M, Infusino F, Maestrini V, et al. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J Diabetes Res. 2019;(9489826). https://doi.org/10.1155/2019/9489826.

  4. Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediat Inflamm. 2017;7018393. https://doi.org/10.1155/2017/7018393.

  5. Badalzadeh R, Azimi A, Alihemmati A, Yousefi B. Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine a in myocardial reperfusion injury. J Physiol Biochem. 2017;73(1):111–20. https://doi.org/10.1007/s13105-016-0530-4.

    Article  CAS  PubMed  Google Scholar 

  6. Mollenhauer M, Friedrichs K, Lange M, Gesenberg J, Remane L, Kerkenpaß C, et al. Myeloperoxidase mediates Postischemic Arrhythmogenic ventricular remodeling. Circ Res. 2017;121(1):56–70. https://doi.org/10.1161/CIRCRESAHA.117.310870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song J, Yang R, Yang J, Zhou L. Mitochondrial dysfunction-associated Arrhythmogenic substrates in diabetes mellitus. Front Physiol. 2018;9:1670. https://doi.org/10.3389/fphys.2018.01670.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S–90S. https://doi.org/10.3945/ajcn.110.001917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohamed JS1, Hajira A, Pardo PS, Boriek AM. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle. Diabetes. 2014;63(5):1546–59. https://doi.org/10.2337/db13-1364.

    Article  CAS  PubMed  Google Scholar 

  10. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–88. https://doi.org/10.1016/j.freeradbiomed.2015.04.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bekiari E, Rizava C, Athanasiadou E, Papatheodorou K, Liakos A, Karagiannis T, et al. Systematic review and meta-analysis of vildagliptin for treatment of type 2 diabetes. Endocrine. 2016;52(3):458–80. https://doi.org/10.1007/s12020-015-0841-1.

    Article  CAS  PubMed  Google Scholar 

  12. Williams R, de Vries F, Kothny W, Serban C, Lopez-Leon S, Chu C, et al. Cardiovascular safety of vildagliptin in patients with type 2 diabetes: a European multi-database, non-interventional post-authorization safety study. Diabetes Obes Metab. 2017;19(10):1473–8. https://doi.org/10.1111/dom.12951.

    Article  CAS  PubMed  Google Scholar 

  13. Bayrami G, Karimi P, Agha-Hosseini F, Feyzizadeh S, Badalzadeh R. Effect of ischemic Postconditioning on myocardial function and infarct size following reperfusion injury in diabetic rats pretreated with Vildagliptin. J Cardiovasc Pharmacol Ther. 2018;23(2):174–83. https://doi.org/10.1177/1074248417729881.

    Article  CAS  PubMed  Google Scholar 

  14. Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br J Pharmacol. 2013;169(5):1048–57. https://doi.org/10.1111/bph.12176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayrami G, Alihemmati A, Karimi P. Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity. Adv Pharm Bull. 2018;8(2):319–29. https://doi.org/10.15171/apb.2018.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313–20. https://doi.org/10.1016/j.phrs.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  17. Najafi M, Noroozi E, Javadi A, Badalzadeh R. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed Pharmacother. 2018;102:385–91. https://doi.org/10.1016/j.biopha.2018.03.047.

    Article  CAS  PubMed  Google Scholar 

  18. Bhar-Amato J, Davies W, Agarwal S. Ventricular arrhythmia after acute myocardial infarction: 'the perfect storm'. Arrhythm Electrophysiol Rev. 2017;6(3):134–9. https://doi.org/10.15420/aer.2017.24.1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koektuerk B, Aksoy M, Horlitz M, Bozdag-Turan I, Turan RG. Role of diabetes in heart rhythm disorders. World J Diabetes. 2016;7(3):45–9. https://doi.org/10.4239/wjd.v7.i3.45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Korantzopoulos P, Letsas KP, Tse G, Fragakis N, Goudis CA, Liu T. Inflammation and atrial fibrillation: a comprehensive review. J Arrhythm. 2018;34(4):394–401. https://doi.org/10.1002/joa3.12077.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies. Nat Rev Immunol. 2019 Jan;19(1):63–4. https://doi.org/10.1038/s41577-018-0098-z.

    Article  CAS  PubMed  Google Scholar 

  22. Saini HK, Xu Y-J, Zhang M, Liu PP, Kirshenbaum LA, Dhalla NS. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol. 2005;10(4):213–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anatoliotakis N, Deftereos S, Bouras G, Giannopoulos G, Tsounis D, Angelidis C, et al. Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem. 2013;13(2):115–38.

    Article  CAS  Google Scholar 

  25. Govender J, Loos B, Marais E, Engelbrecht AM. Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: a possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol Appl Pharmacol. 2018. https://doi.org/10.1016/j.taap.2018.06.031.

  26. Holmström KM, Kostov RV, Dinkova-Kostova AT. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 2016;1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li X, Wang H, Gao Y. Protective effects of Quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway. PLoS One. 2016;11(10):e0164237. https://doi.org/10.1371/journal.pone.0164237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection, and analysis. Su Wu and Qin Yang wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Su Wu.

Ethics declarations

Conflict of interest

The authors declare that there was no conflict of interest in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ai, W., Nie, L. et al. Vildagliptin reduces myocardial ischemia-induced arrhythmogenesis via modulating inflammatory responses and promoting expression of genes regulating mitochondrial biogenesis in rats with type-II diabetes. J Interv Card Electrophysiol 59, 517–526 (2020). https://doi.org/10.1007/s10840-019-00679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-019-00679-9

Keywords

Navigation