Skip to main content
Log in

The role of microRNAs in the development, regulation, and treatment of atrial fibrillation

  • MULTIMEDIA REPORT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNA)s regulate expression of genes involved in various processes including cardiac automaticity, conduction, excitability, and fibrosis and therefore may provide a diagnostic utility to identify high-risk patients for atrial fibrillation (AF). In this study, we tested the hypothesis that specific profiles of circulating miRNAs can identify patients with AF and can also help to identify patients at high risk of AF recurrence after ablation.

Methods

Two patient populations were studied: 140 AF cases (93 paroxysmal and 47 persistent) and 50 healthy controls, and 141 AF ablation cases with (n = 86) and without (n = 55) 1-year recurrence. Assessment of several previously identified AF-associated plasma miRNAs (21, 29a, 133a, 133b, 150, 328) was performed with TaqMan assays, using synthetic miRNAs as standards.

Results

The AF cases compared to the healthy controls were older and were more often male and hypertensive. After multivariate adjustment, higher miRNA-21 levels significantly decreased the risk of AF (OR = 0.93 per fmol/μl (95% CI = 0.89–0.98, p = 0.007)). There were no significant differences in circulating miRNAs between the AF subtypes of persistent and paroxysmal. Among the AF ablation cases, miRNA-150 was lower for those with AF recurrences at 1 year (adjusted OR = 0.98 per 500,000 fmol/μl; 95% CI = 0.965, 0.998; p = 0.039).

Conclusions

Decreased circulating miRNA-21 is associated with AF, but not with AF subtypes, suggestive that molecular mechanisms responsible for the onset and progression of the AF may be different. Circulating miRNA-150 was significantly associated with a reduction in 1-year AF recurrence post ablation suggestive of adverse structural and electrical remodeling as recurrence mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–25.

  2. Chinitz JS, Castellano JM, Kovacic JC, Fuster V. Atrial fibrillation, stroke, and quality of life. Ann N Y Acad Sci. 2012;1254:140–50.

    Article  CAS  PubMed  Google Scholar 

  3. Lip GY, Fauchier L, Freedman SB, Van Gelder I, Natale A, Gianni C, et al. Atrial fibrillation. Nat Rev Dis Primers. 2016;2:16016.

  4. Kottkamp H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 2013;34:2731–8.

    Article  PubMed  Google Scholar 

  5. Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res. 2011;89:710–21.

    Article  CAS  PubMed  Google Scholar 

  6. Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G. Atrial fibrillation and microRNAs. Front Physiol. 2014;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. McDonald JS, Milosevic D, Reddi HV, Grebe KS, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833–40.

    Article  CAS  PubMed  Google Scholar 

  8. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao J, Z-C, Elinor PT, Liang D, Zhang H, Liu Y, et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med. 2011;9:159.

  10. Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, et al. Plasma miR-499 as a biomarker of acute myocardial infarction in humans. Clin Chem. 2010;56:1183–5.

  11. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

  12. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  13. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55:1977–83.

  14. McManus DD, Tanriverdi K, Lin H, Esa N, Kinno M, Mandapati D, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm. 2015;12:3–10.

  15. Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X, et al. The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One. 2012;7:e44906.

  16. Nishi H, Sakaguchi T, Miyagawa S, Yoshikawa Y, Fukushima S, Saito S, et al. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS One. 2013;8:e73397.

  17. D’Alessandra Y, Pompilio G, Capogrossi MC. Letter by D’Alessandra et al regarding article, “Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease”. Circ Cardiovasc Genet. 2011;4(1):e7.

    Article  PubMed  Google Scholar 

  18. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107:278.

  19. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barwari T, Eminaga S, Armstrong PC, Chan MV, Lu R, Barallobre-Barreiro J, et al. Abstract 19935: MicroRNA-21 regulates transforming growth factor beta-1 release from platelets: a novel mechanism for the anti-fibrotic effects of microRNA-21 inhibition. Circulation. 2017;136:A19935–5.

  21. Noferesti SS, Sohel MMH, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, et al. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res. 2015;8(81):81.

  22. Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, et al. MicroRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem. 2016;38:2103–22.

  23. Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6:290–8.

  24. Zeller T, Keller T, Ojeda F, Reichlin T, Twerenbold R, Tzikas S, et al. Assessment of microRNAs in patients with unstable angina pectoris. Eur Heart J. 2014;35:2106–14.

  25. Zawada AM, Zhang L, Emrich IE, Rogacev KS, Krezdorn N, Rotter B, et al. MicroRNA profiling of human intermediate monocytes. Immunobiology. 2017;222:587–96.

Download references

Acknowledgements

The authors thank Matt Grover, Lizzy Stauder, and Johnny Thrang for their assistance with samples processing.

Funding

This study received funding from the Intermountain Research and Medical Foundation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jared Bunch.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was a retrospective design with stored serum used for analysis. All patients provided consent for the use of their serum and medical records for research purposes. The study was approved by the IRB.

Conflict of interest

Oxana Galenko: none

Victoria Jacobs: none

Stacey Knight: none

Madisyn Taylor: none

Michael J. Cutler: none

Joseph B. Muhlestein: none

John Carlquist: none

Kirk Knowlton: none

T. Jared Bunch: major, Boehringer Ingelheim research grant

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galenko, O., Jacobs, V., Knight, S. et al. The role of microRNAs in the development, regulation, and treatment of atrial fibrillation. J Interv Card Electrophysiol 55, 297–305 (2019). https://doi.org/10.1007/s10840-018-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-018-0495-z

Keywords

Navigation