Skip to main content
Log in

Purkinje physiology and pathophysiology

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

There has always been an appreciation of the role of Purkinje fibers in the fast conduction of the normal cardiac impulse. Here, we briefly update our knowledge of this important set of cardiac cells. We discuss the anatomy of a Purkinje fiber strand, the importance of longitudinal conduction within a strand, circus movement within a strand, conduction, and excitability properties of Purkinjes. At the cell level, we discuss the important components of the ion channel makeup in the nonremodeled Purkinjes of healthy hearts. Finally, we discuss the role of the Purkinjes in forming the heritable arrhythmogenic substrates such as long QT, heritable conduction slowing, CPVT, sQT, and Brugada syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Romero D, Camara O, Sachse F, Sebastian R. Analysis of microstructure of the cardiac conduction system based on three-dimensional confocal microscopy. PLoS One. 2016;11:e0164093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dun W, Lowe JS, Wright P, Hund TJ, Mohler PJ, Boyden PA. Ankyrin-G participates in INa remodeling in myocytes from the border zones of infarcted canine heart. PLoS One. 2013;8:e78087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lazzara R, Yeh BK, Samet P. Functional transverse interconnections within the His bundle and the bundle branches. Circ Res. 1973;32:509–15.

    Article  PubMed  CAS  Google Scholar 

  4. Scherlag BJ, El-Sherif N, Hope RR, Lazzara R. The significance of dissociation of conduction in the canine His bundle. Electrophysiological studies in vivo and in vitro. J Electrocardiol. 1978;11:343–54.

    Article  PubMed  CAS  Google Scholar 

  5. Cranefield PF. In. The conduction of the cardiac impulse. The slow response and cardiac arrhythmias. Futura, Mt.Kisco. 1975.

  6. Anderson GJ, Greenspan K, Bandura JP, Fisch C. Asynchrony of conduction within the canine specialized Purkinje fiber system. Circ Res. 1970;27:691–703.

    Article  PubMed  CAS  Google Scholar 

  7. Myerburg RJ, Nilsson K, Befeler B, Castellanos A Jr, Gelband H. Transverse spread and longitudinal dissociation in the distal A-V conducting system. J Clin Invest. 1973;52:885–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can IV 1914; 43–52.

  9. Roberts JD, Gollob MH, Young C, Connors SP, Gray C, Wilton SB, et al. Bundle branch re-entrant ventricular-tachycardia: novel genetic mechanisms in a life-threatening arrhythmia. JACC: Clin Electrophysiol. 2017;3:276–88.

    Google Scholar 

  10. Nogami A. Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing Clin Electrophysiol. 2011;34:624–50.

    Article  PubMed  Google Scholar 

  11. Nogami A. Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol. 2011;34:1034–49.

    Article  PubMed  Google Scholar 

  12. Sung RK, Boyden PA, Scheinman M. Cellular physiology and clinical manifestations of fascicular arrhythmias in normal hearts. JACC: Clin Electrophysiol. 2017;3:1343.

    Google Scholar 

  13. Komatsu Y, Nogami A, Kurosaki K, Morishima I, Masuda K, Ozawa T, et al. Fascicular ventricular tachycardia originating from papillary muscles. Circ Arrhythm Electrophysiol. 2017;10:e004549.

    Article  PubMed  CAS  Google Scholar 

  14. DRAPER MH, Weidmann S. Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol. 1951;115:74–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Myerburg RJ, Nilsson K, Gelband H. Physiology of canine intraventricular conduction and endocardial excitation. Circ Res. 1972;30:217–43.

    Article  PubMed  CAS  Google Scholar 

  16. Pinto JMB, Boyden PA. Electrophysiologic remodeling in ischemia and infarction. Cardiovasc Res. 1999;42:284–97.

    Article  PubMed  CAS  Google Scholar 

  17. Friedman PL, Fenoglio JJ Jr, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1975;36:127–44.

    Article  PubMed  CAS  Google Scholar 

  18. Friedman PL, Stewart JR, Wit AL. Spontaneous and induced arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res. 1973;33:612–26.

    Article  PubMed  CAS  Google Scholar 

  19. Bogun F, Good E, Reich S, Elmouchi D, Igic P, Tschopp D, et al. Role of Purkinje fibers in post-infarction ventricular tachycardia. J Am Coll Cardiol. 2006;48:2500–7.

    Article  PubMed  Google Scholar 

  20. Nattel S, Maguy A, Le BS, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.

    Article  PubMed  CAS  Google Scholar 

  21. Boyden PA, Pu J, Pinto JMB, Ter Keurs HEDJ. Ca2+ transients and Ca2+ waves in Purkinje cells. Role in action potential initiation. Circ Res. 2000;86:448–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Han W, Chartier D, Li D, Nattel S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation. 2001;104:2095–100.

    Article  PubMed  CAS  Google Scholar 

  23. Vassalle M, Bocchi L. Differences in ionic currents between canine myocardial and Purkinje cells. Physiological Reports 2013;1. pii; e00036.

  24. Han W, Bao W, Wang Z, Nattel S. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ Res. 2002;91:790–7.

    Article  PubMed  CAS  Google Scholar 

  25. Jeck C, Pinto JMB, Boyden PA. Transient outward currents in subendocardial Purkinje myocytes surviving in the 24 and 48 hr infarcted heart. Circulation. 1995;92:465–73.

    Article  PubMed  CAS  Google Scholar 

  26. Gadsby DC, Cranefield PF. Two levels of resting potential in cardiac Purkinje fibers. J Gen Physiol. 1977;70:725–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Boyden PA, Hirose M, Dun W. Cardiac Purkinje cells. Heart Rhythm. 2010;7:127–35.

    Article  PubMed  Google Scholar 

  28. Robinson RB, Boyden PA, Hoffman BF, Hewett KW. The electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Phys. 1987;253:H1018–25.

    CAS  Google Scholar 

  29. Boyden PA, Dun W, Stuyvers BD. What is a Ca(2+) wave? Is it like an electrical wave? Arrhythm Electrophysiol Rev. 2015;4:35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boyden PA, Barbhaiya C, Lee T, Ter Keurs HEDJ. Nonuniform Ca2+ transients in arrhythmogenic Purkinje cells that survive in the infarcted canine heart. Cardiovasc Res. 2003;57:681–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hirose M, Stuyvers BD, Dun W, ter Keurs HE, Boyden PA. Function of Ca(2+) release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy. Circ Arrhythm Electrophysiol. 2008;1:387–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ter Keurs HEDJ, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev. 2007;87:457–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RFJ, Faivre L, et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012;60:144–56.

    Article  PubMed  Google Scholar 

  34. Mann SA, Castro ML, Ohanian M, Guo G, Zodgekar P, Sheu A, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012;60:1566–73.

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe H, Koopmann TT, Le SS, Yang T, Ingram CR, Schott JJ, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Holst AG, Saber S, Houshmand M, Zaklyazminskaya EV, Wang Y, Jensen HK, et al. Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics. Can J Cardiol. 2012;28:196–200.

    Article  PubMed  CAS  Google Scholar 

  37. Gaborit N, Le BS, Szuts V, Varro A, Escande D, Nattel S, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582:675–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Haissaguerre M, Extramiana F, Hocini M, Cauchemez B, Jais P, Cabrera JA, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108:925–8.

    Article  PubMed  Google Scholar 

  39. Sadek MM, Benhayon D, Sureddi R, Chik W, Santangeli P, Supple GE, et al. Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015;12:67–75.

    Article  PubMed  Google Scholar 

  40. Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL Jr, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dun W, Boyden PA. The Purkinje cell; 2008 style. J Mol Cell Cardiol. 2008;45:617–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Makita N, Seki A, Sumitomo N, Chkourko H, Fukuhara S, Watanabe H, et al. A Connexin40 mutation associated with a malignant variant of progressive familial heart block. Circ Arrhythm Electrophysiol. 2012;5:163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, et al. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med. 2014;6:937–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu H, El ZL, Kruse M, Guinamard R, Beckmann A, Bozio A, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.

    Article  PubMed  CAS  Google Scholar 

  45. Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Salle L. TRPM4 in cardiac electrical activity. Cardiovasc Res. 2015;108:21–30.

    Article  PubMed  CAS  Google Scholar 

  46. Iyer V, Roman-Campos D, Sampson KJ, Kang G, Fishman GI, Kass RS. Purkinje cells as sources of arrhythmias in long QT syndrome type 3. Sci Rep. 2015;5:13287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC. The N588K-HERG K+ channel mutation in the ‘short QT syndrome’: mechanism of gain-in-function determined at 37 degrees C. Biochem Biophys Res Commun. 2005;334:441–9.

    Article  PubMed  CAS  Google Scholar 

  48. Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, et al. Variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation; clinical perspective. Circ Arrhythm Electrophysiol. 2011;4:352–61.

    Article  PubMed  CAS  Google Scholar 

  49. Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, et al. Unique cardiac Purkinje fiber transient outward current subunit composition; novelty and significance. Circ Res. 2013;112:1310–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sturm AC, Kline CF, Glynn P, Johnson BL, Curran J, Kilic A, et al. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy. J Am Heart Assoc. 2015;4:e001762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRYR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2000;102:r49–53.

    Article  Google Scholar 

  52. Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7:1122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Laitinen PJ, Brown KM, Piipo K, Swan H, Devaney JM, Brahmbhatt B, et al. Mutations of the cardiac ryanodine receptor (RYR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103:r7–r12.

    Article  Google Scholar 

  54. Liu N, Denegri M, Dun W, Boncompagni S, Lodola F, Protasi F, et al. Abnormal propagation of calcium waves and ultrastructural remodeling in recessive catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2013;113:142–52.

    Article  PubMed  CAS  Google Scholar 

  55. Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005;96:e77–82.

    Article  PubMed  CAS  Google Scholar 

  56. Willis BC, Pandit SV, Ponce-Balbuena D, Zarzoso M, Guerrero-Serna G, Limbu B, et al. Constitutive intracellular Na+ excess in Purkinje cells promotes arrhythmogenesis at lower levels of stress than ventricular myocytes from mice with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2016;133:2348–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, et al. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res. 2010;107:512–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fujii Y, Itoh H, Ohno S, Murayama T, Kurebayashi N, Aoki H, et al. A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm. 2017;14:98–107.

    Article  PubMed  Google Scholar 

  59. Jiang D, Chen W, Wang R, Zhang L, Chen SRW. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. PNAS. 2007;104:18309–14.

    Article  PubMed  Google Scholar 

  60. Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. PNAS. 2015;112:E1669–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants NIH HL114383, HL135754, and HL134824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope A. Boyden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyden, P.A. Purkinje physiology and pathophysiology. J Interv Card Electrophysiol 52, 255–262 (2018). https://doi.org/10.1007/s10840-018-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-018-0414-3

Keywords

Navigation