Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation



Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation.


Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation.


Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications.


The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Kamakura S, Shimizu W, Matsuo K, Taguchi A, Suyama K, Kurita T, et al. Localization of optimal ablationsite of idiopathic ventricular tachycardia from right and left ventricular outflow tract by body surface ECG. Circulation. 1998;98:1525–33.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Callans DJ, Menz V, Schwartzman D, Gottlieb CD, Marchlinski FE. Repetitive monomorphic tachycardia from the left ventricular outflow tract: Electrocardiographic patterns consistent with a left ventricular site of origin. J Am Coll Cardiol. 1997;29:1023–7.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kanagaratnam L, Tomassoni G, Schweikert R, Pavia S, Bash D, Beheiry S, et al. Ventricular tachycardias arising from the aortic sinus of valsalva: an underrecognized variant of left outflow tract ventricular tachycardia. J Am Coll Cardiol. 2001;37:1408–14.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ouyang F, Fotuhi P, Ho SY, Hebe J, Volkmer M, Goya M, et al. Repetitive onomorphic ventricular tachycardia originating from the aortic sinus cusp: Electrocardiographic characterization for guiding catheter ablation. J Am Coll Cardiol. 2002;39:500–8.

    Article  PubMed  Google Scholar 

  5. 5.

    Haqqani HM, Morton JB, Kalman JM. Using the 12-lead ECG to localize the origin of atrial and ventricular tachycardia, part 2: ventricular tachycardia. J Cardiovasc Electrophysiol. 2009;20:825–32.

    Article  PubMed  Google Scholar 

  6. 6.

    Bunch TJ, Day JD. Right meets left: A common mechanism underlying right and left ventricular outflow tract tachycardias. J Cardiovasc Electrophysiol. 2006;17:1059–61.

    Article  PubMed  Google Scholar 

  7. 7.

    Tada H, Ito S, Naito S, Kurosaki K, Kubota S, Sugiyasu A, et al. Idiopathic ventricular arrhythmia arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J Am Coll Cardiol. 2005;45:877–86.

    Article  PubMed  Google Scholar 

  8. 8.

    Tada H, Tadokoro K, Ito S, Naito S, Hashimoto T, Kaseno K, et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart Rhythm. 2007;4:7–16.

    Article  PubMed  Google Scholar 

  9. 9.

    Doppalapudi H, Yamada T, McElderry HT, Plumb VJ, Epstein AE, Kay GN. Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circ Arrhythmia Electrophysiol. 2008;1:23–9.

    Article  Google Scholar 

  10. 10.

    Aryana A, d’Avila A, Heist EK, Mela T, Singh JP, Ruskin JN, et al. Remote magnetic navigation to guide endocardial and epicardial catheter mapping of scar-related ventricular tachycardia. Circulation. 2007;115:1191–200.

    PubMed  Google Scholar 

  11. 11.

    Burkhardt JD, Saliba WI, Schweikert RA, Cummings J, Natale A. Remote magnetic navigation to map and ablate left coronary cusp ventricular tachycardia. J Cardiovasc Electrophysiol. 2006;17:1142–4.

    Article  PubMed  Google Scholar 

  12. 12.

    Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, et al. Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation. 2002;106:2980–5.

    Article  PubMed  Google Scholar 

  13. 13.

    Chun J, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S, et al. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J. 2007;28:190–5.

    Article  PubMed  Google Scholar 

  14. 14.

    Akca F, Theuns DA, Abkenari LD, de Groot NM, Jordaens L, Szili-Torok T. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation. Europace. 2013;15(10):1426–31.

    Article  PubMed  Google Scholar 

  15. 15.

    Davis DR, Tang AS, Gollob MH, Lemery R, Green MS, Birnie DH. Remote magnetic navigation-assisted catheter ablation enhances catheter stability and ablation success with lower catheter temperatures. Pacing Clin Electrophysiol. 2008;31:893–8.

    Article  PubMed  Google Scholar 

  16. 16.

    Wittkampf FH, Nakagawa H. RF catheter ablation: Lessons on lesions. Pacing Clin Electrophysiol. 2006;29:1285–97.

    Article  PubMed  Google Scholar 

  17. 17.

    Zhang F, Yang B, Chen H, Ju W, Kojodjojo P, Cao K, et al. Magnetic versus manual catheter navigation for mapping and ablation of right ventricular outflow tract ventricular arrhythmias: a randomized controlled study. Heart Rhythm. 2013;10:1178–83.

    Article  PubMed  Google Scholar 

  18. 18.

    Thornton AS, Jordaens LJ. Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm. 2006;3:691–6.

    Article  PubMed  Google Scholar 

  19. 19.

    Latcu DG, Ricard P, Popescu I, Arnoult M, Hugues T, Saoudi N. Endocardial voltage mapping for diagnosis of arrhythmogenic right ventricular dysplasia: Remote magnetic navigationmaps are more accurate than manual maps. Eur Heart J. 2010;31:S_258.

    Google Scholar 

  20. 20.

    Konstantinidou M, Koektuerk B, Wissner E, Schmidt B, Zerm T, Ouyang F, et al. Catheter ablation of right ventricular outflow tract tachycardia: a simplified remote-controlled approach. Europace. 2011;5:696–700.

    Article  Google Scholar 

  21. 21.

    Akea F, Onsesveren I, Jordaens L, Szili-Torok T. Safety and efficacy of the remote magnetic navigation for ablation of ventricular tachycardia—a systematic review. J Interv Card Electrophysiol. 2012;34:65–71.

    Article  Google Scholar 

  22. 22.

    Szili-Torok T, Schwagten B, Akca F, Bauernfeind T, Abkenari LD, Haitsma D, et al. Catheter ablation of ventricular tachycardias using remote magnetic navigation: a consecutive case–control study. J Cardiovasc Electrophysiol. 2012;23:948–54.

    Article  PubMed  Google Scholar 

  23. 23.

    Di Biase L, Santangeli P, Astudillo V, Conti S, Mohanty P, Sanchez JE, et al. Endo-epicardial ablation of ventricular arrhythmias in the left ventricle with the remote magnetic navigation system and the 3.5-mm open irrigated magnetic catheter: results from a large single-center case–control series. Heart Rhythm. 2010;7:1029–35.

    Article  PubMed  Google Scholar 

  24. 24.

    Thornton AS, Res J, Mekel JM, Jordaens LJ. Use of advanced mapping and remote magnetic navigation to ablate left ventricular fascicular tachycardia. Pacing and Clinical Electrophysiology. 2006;29:685–8.

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mitsuharu Kawamura.

Ethics declarations



Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawamura, M., Scheinman, M.M., Tseng, Z.H. et al. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation. J Interv Card Electrophysiol 48, 35–42 (2017).

Download citation


  • Ventricular arrhythmia
  • Catheter ablation
  • Remote magnetic navigation
  • Manual ablation
  • Repeat procedure