Skip to main content
Log in

His electrogram alternans (Zhang’s phenomenon) and a new model of dual pathway atrioventricular node conduction

  • REVIEWS
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

In contrast to the current textbook model and the current clinical index of dual pathway atrioventricular (AV) nodal conduction, here we summarize the discovery and validation of Zhang’s phenomenon (originally His electrogram alternans) as a new index of dual pathway conduction. We also describe the new findings of transverse-versus-longitudinal electrical propagation within the AV node as the electrophysiological basis underlining this new index. Thus, a new index and a new model of dual pathway AV conduction are being developed.

Methods

We have reviewed current literature and provided evidence supporting a new index and a new model of dual pathway AV conduction.

Results

Recent data revealed that during fast pathway conduction, electrical excitation in the AV node propagates in a superior to inferior direction across AV conduction axis and fiber orientation to reach first the superior His bundle fibers. However, this transverse conduction can fail easily within the superior nodal domain at fast rates. The failing of transverse propagation permits electrical excitation formed at the posterior/inferior nodal region to propagate longitudinally along fiber orientation in a posterior to anterior direction through the inferior nodal domain to reach the inferior His bundle (slow pathway conduction). This transverse-versus-longitudinal electrical propagation within the AV node results in a functional dissociation in the distal node and formation of dual inputs into the His bundle, providing the electrophysiological basis for the formation of Zhang’s phenomenon (His electrogram alternans).

Conclusions

Based on strong experimental data, a new index and a new model of dual pathway AV nodal conduction are emerging, although they are still awaiting clinical validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tawara, S. (1906). Das Reizleitungssystem des Säugetierherzens: Eine Anatomischhistologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Gustav Fischer.

    Google Scholar 

  2. Zhang, Y., & Mazgalev, T. N. (2004). Ventricular rate control during atrial fibrillation and AV node modifications: past, present, and future. Pacing and Clinical Electrophysiology, 27, 382–393.

    Article  PubMed  Google Scholar 

  3. Scheinman, M. M., & Yang, Y. (2005). The history of AV nodal reentry. Pacing and Clinical Electrophysiology, 28, 1232–1237.

    Article  PubMed  Google Scholar 

  4. Katritsis, D. G., & Camm, A. J. (2010). Atrioventricular nodal reentrant tachycardia. Circulation, 122, 831–840.

    Article  PubMed  Google Scholar 

  5. Mazgalev, T. N., Ho, S. Y., & Anderson, R. H. (2001). Anatomic-electrophysiological correlations concerning the pathways for atrioventricular conduction. Circulation, 103, 2660–2667.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Bharati, S., Mowrey, K. A., Zhuang, S., Tchou, P. J., & Mazgalev, T. N. (2001). His electrogram alternans reveal dual-wavefront inputs into and longitudinal dissociation within the bundle of His. Circulation, 104, 832–838.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. (2014). Transverse versus longitudinal electrical propagation within the atrioventricular node during dual pathway conduction: basis of dual pathway electrophysiology and His electrogram alternans (Zhang's phenomenon). International Journal of Cardiology, 171, 259–264.

    Article  PubMed  Google Scholar 

  8. Zhang, Y. (2014). In vivo recording of Zhang's phenomenon (His electrogram alternans): a novel index of atrioventricular node dual pathway conduction. Journal of Interventional Cardiac Electrophysiology, 40, 99–103.

    Article  PubMed  Google Scholar 

  9. Mendez, C., & Moe, G. K. (1966). Demonstration of a dual A-V nodal conduction system in the isolated rabbit heart. Circulation Research, 19, 378–393.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Bharati, S., Mowrey, K. A., & Mazgalev, T. N. (2003). His electrogram alternans reveal dual atrioventricular nodal pathway conduction during atrial fibrillation: the role of slow-pathway modification. Circulation, 107, 1059–1065.

    Article  PubMed  Google Scholar 

  11. Zhang, Y., Bharati, S., Sulayman, R., Mowrey, K. A., Tchou, P. J., & Mazgalev, T. N. (2004). Atrioventricular nodal fast pathway modification: mechanism for lack of ventricular rate slowing in atrial fibrillation. Cardiovascular Research, 61, 45–55.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., & Mazgalev, T. N. (2011). AV nodal dual pathway electrophysiology and Wenckebach periodicity. Journal of Cardiovascular Electrophysiology, 22, 1256–1262.

    Article  PubMed  Google Scholar 

  13. Zhang, Y., & Mazgalev, T. N. (2012). Atrioventricular node functional remodeling induced by atrial fibrillation. Heart Rhythm, 9, 1419–1425.

    Article  PubMed  Google Scholar 

  14. Denes, P., Wu, D., Dhingra, R. C., Chuquimia, R., & Rosen, K. M. (1973). Demonstration of dual A-V nodal pathways in patients with paroxysmal supraventricular tachycardia. Circulation, 48, 549–555.

    Article  CAS  PubMed  Google Scholar 

  15. Leitch, J., Klein, G. J., Yee, R., & Murdock, C. (1990). Invasive electrophysiologic evaluation of patients with supraventricular tachycardia. Cardiology Clinics, 8, 465–477.

    CAS  PubMed  Google Scholar 

  16. Mani, B. C., & Pavri, B. B. (2014). Dual atrioventricular nodal pathways physiology: a review of relevant anatomy, electrophysiology, and electrocardiographic manifestations. Indian Pacing Electrophysiol J, 14, 12–25.

    PubMed Central  PubMed  Google Scholar 

  17. Sheahan, R. G., Klein, G. J., Yee, R., Le Feuvre, C. A., & Krahn, A. D. (1996). Atrioventricular node reentry with ‘smooth’ AV node function curves: a different arrhythmia substrate? Circulation, 93, 969–972.

    Article  CAS  PubMed  Google Scholar 

  18. Krahn, A. D., Klein, G. J., Yee, R., Basta, M. N., & Lee, J. K. (1997). Progressive anterior ablation in the coronary sinus region: evidence to support the presence of a ‘slow pathway’ input in normal patients? Circulation, 96, 3477–3483.

    Article  CAS  PubMed  Google Scholar 

  19. Jackman, W. M., Beckman, K. J., McClelland, J. H., Wang, X., Friday, K. J., Roman, C. A., et al. (1992). Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. The New England Journal of Medicine, 327, 313–318.

    Article  CAS  PubMed  Google Scholar 

  20. Mitrani, R. D., Klein, L. S., Hackett, F. K., Zipes, D. P., & Miles, W. M. (1993). Radiofrequency ablation for atrioventricular node reentrant tachycardia: comparison between fast (anterior) and slow (posterior) pathway ablation. Journal of the American College of Cardiology, 21, 432–441.

    Article  CAS  PubMed  Google Scholar 

  21. Jazayeri, M. R., Hempe, S. L., Sra, J. S., Dhala, A. A., Blanck, Z., Deshpande, S. S., et al. (1992). Selective transcatheter ablation of the fast and slow pathways using radiofrequency energy in patients with atrioventricular nodal reentrant tachycardia. Circulation, 85, 1318–1328.

    Article  CAS  PubMed  Google Scholar 

  22. Gamache, M. C., Bharati, S., Lev, M., & Lindsay, B. D. (1994). Histopathological study following catheter guided radiofrequency current ablation of the slow pathway in a patient with atrioventricular nodal reentrant tachycardia. Pacing and Clinical Electrophysiology, 17, 247–251.

    Article  CAS  PubMed  Google Scholar 

  23. Olgin, J. E., Ursell, P., Kao, A. K., & Lesh, M. D. (1996). Pathological findings following slow pathway ablation for AV nodal reentrant tachycardia. Journal of Cardiovascular Electrophysiology, 7, 625–631.

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Quintana, D., Davies, D. W., Ho, S. Y., Oslizlok, P., & Anderson, R. H. (1997). Architecture of the atrial musculature in and around the triangle of Koch: its potential relevance to atrioventricular nodal reentry. Journal of Cardiovascular Electrophysiology, 8, 1396–1407.

    Article  CAS  PubMed  Google Scholar 

  25. Reid, M. C., Billette, J., Khalife, K., & Tadros, R. (2003). Role of compact node and posterior extension in direction-dependent changes in atrioventricular nodal function in rabbit. Journal of Cardiovascular Electrophysiology, 14, 1342–1350.

    Article  PubMed  Google Scholar 

  26. Efimov, I. R., Nikolski, V. P., Rothenberg, F., Greener, I. D., Li, J., Dobrzynski, H., et al. (2004). Structure-function relationship in the AV junction. The Anatomical Record, 280, 952–965.

    Article  PubMed  Google Scholar 

  27. Mazgalev, T. N., & Zhang, Y. (2003). The dual pathway electrophysiology of the atrioventricular conduction. A new look at an old phenomenon. Minerva Cardioangiologica, 51, 1–14.

    CAS  PubMed  Google Scholar 

  28. Zipes, D. P. (2000). Introduction-the atrioventricular node: a riddle wrapped in a mystery inside an enigma. In T. N. Mazgalev & P. J. Tchou (Eds.), Atrial-AV nodal electrophysiology: a view from the millennium. Armonk, New York: Futura Publishing Company, Inc. XI-XIV.

    Google Scholar 

  29. Hucker, W. J., Sharma, V., Nikolski, V. P., & Efimov, I. R. (2007). Atrioventricular conduction with and without AV nodal delay: two pathways to the bundle of His in the rabbit heart. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1122–H1130.

    Article  CAS  PubMed  Google Scholar 

  30. Hucker, W. J., Fedorov, V. V., Foyil, K. V., Moazami, N., & Efimov, I. R. (2008). Images in cardiovascular medicine. Optical mapping of the human atrioventricular junction. Circulation, 117, 1474–1477.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Widran, J., & Lev, M. (1951). The dissection of the atrioventricular node, bundle and bundle branches in the human heart. Circulation, 4, 863–867.

    Article  CAS  PubMed  Google Scholar 

  32. McGuire, M. A., Bourke, J. P., Robotin, M. C., Johnson, D. C., Meldrum-Hanna, W., Nunn, G. R., et al. (1993). High resolution mapping of Koch's triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia. Circulation, 88, 2315–2328.

    Article  CAS  PubMed  Google Scholar 

  33. Anselme, F., Hook, B., Monahan, K., Frederiks, J., Callans, D., Zardini, M., et al. (1996). Heterogeneity of retrograde fast-pathway conduction pattern in patients with atrioventricular nodal reentry tachycardia: observations by simultaneous multisite catheter mapping of Koch's triangle. Circulation, 93, 960–968.

    Article  CAS  PubMed  Google Scholar 

  34. De Carvalho, A. P., De Almeida, D. F. (1960). Spread of activity through the atrioventricular node. Circulation Research, 801-9.

  35. Alanis, J., & Benitez, D. (1975). Two preferential conducting pathways within the bundle of His of the dog heart. The Japanese Journal of Physiology, 25, 371–385.

    Article  CAS  PubMed  Google Scholar 

  36. Myerburg, R. J., Nilsson, K., Befeler, B., Castellanos, A., Jr., & Gelband, H. (1973). Transverse spread and longitudinal dissociation in the distal A-V conducting system. The Journal of Clinical Investigation, 52, 885–895.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Spach, M. S., Miller, W. T., 3rd, Geselowitz, D. B., Barr, R. C., Kootsey, J. M., & Johnson, E. A. (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circulation Research, 48, 39–54.

    Article  CAS  PubMed  Google Scholar 

  38. Temple, I. P., Inada, S., Dobrzynski, H., & Boyett, M. R. (2013). Connexins and the atrioventricular node. Heart Rhythm, 10, 297–304.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Greener, I. D., Monfredi, O., Inada, S., Chandler, N. J., Tellez, J. O., Atkinson, A., et al. (2011). Molecular architecture of the human specialised atrioventricular conduction axis. Journal of Molecular and Cellular Cardiology, 50, 642–651.

    Article  CAS  PubMed  Google Scholar 

  40. Geller, J. C., Biblo, L. A., & Carlson, M. D. (1998). New evidence that AV node slow pathway conduction directly influences fast pathway function. Journal of Cardiovascular Eelectrophysiology, 9, 1026–1035.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. His electrogram alternans (Zhang’s phenomenon) and a new model of dual pathway atrioventricular node conduction. J Interv Card Electrophysiol 45, 19–28 (2016). https://doi.org/10.1007/s10840-015-0079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0079-0

Keywords

Navigation