Skip to main content
Log in

Impaired adaptation to left atrial pressure increase in patients with atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background or purpose

Episodes of left atrial (LA) pressure increase predispose to atrial fibrillation (AF). The adaptation of LA mechanical function and electrophysiology to pressure elevation in healthy adults, and in patients with AF, is largely unknown.

Methods

Eleven patients with left-sided accessory pathway (controls) and 16 patients with paroxysmal AF undergoing catheter ablation were studied. LA pressure (LAP) was recorded through transseptal catheterization, while speckle tracking-derived peak LA longitudinal strain (PALS) was measured using transthoracic echocardiography. Stiffness index (SI) was calculated as mean LAP/PALS. Effective refractory period (ERP) of the LA was determined during simultaneous atrioventricular (AV) pacing and during atrial pacing.

Results

At baseline, AF patients had higher LA pressure (mean LAP 8.3 ± 4.7 vs. 5.1 ± 3.1 mmHg, p = 0.048), reduced LA mechanical function (PALS 15.1 ± 5.1 vs. 21.6 ± 6.2 %, p = 0.006, SI 0.69 ± 0.75 vs. 0.28 ± 0.22, p = 0.015), and longer LA ERP (242.3 ± 33.4 vs. 211.7 ± 15.6 ms, p = 0.017). Mean LAP was increased to the same extent by AV pacing in controls and AF patients (mean change 12.6 ± 7.4 vs. 12.6 ± 7.5 mmHg, p = 0.980). At the same time PALS decreased (from 15.1 ± 5.1 to 11.6 ± 3.3 %, p = 0.008), SI increased (from 0.69 ± 0.75 to 1.29 ± 1.17, p < 0.001) and ERP shortened (from 242.3 ± 33.4 to 215.9 ± 26.3 ms, p = 0.003) in AF patients, while they remained unchanged in controls.

Conclusions

The stiffened LA in patients with AF responds to acute pressure elevation with an exaggerated increase in wall tension and decrease in ERP, which is not seen in the normal LA. This may underlie the propensity for AF during episodes of atrial stretch in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solti, F., Vecsey, T., Kékesi, V., & Juhász-Nagy, A. (1989). The effect of atrial dilatation on the genesis of atrial arrhythmias. Cardiovascular Research, 23(10), 882–886.

    Article  CAS  PubMed  Google Scholar 

  2. Ravelli, F., & Allessie, M. (1997). Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation, 96, 1686–1695.

    Article  CAS  PubMed  Google Scholar 

  3. Eijsbouts, S. C., Majidi, M., van Zandvoort, M., & Allessie, M. A. (2003). Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. Journal of Cardiovascular Electrophysiology, 14, 269–278.

    Article  PubMed  Google Scholar 

  4. Nazir, S. A., & Lab, M. J. (1996). Mechanoelectric feedback and atrial arrhythmias. Cardiovascular Research, 32(1), 52–61.

    Article  CAS  PubMed  Google Scholar 

  5. Calkins, H., el-Atassi, R., Kalbfleisch, S., Langberg, J., & Morady, F. (1992). Effects of an acute increase in atrial pressure on atrial refractoriness in humans. Pacing and Clinical Electrophysiology, 15(11 Pt 1), 1674–1680.

    Article  CAS  PubMed  Google Scholar 

  6. Tse, H. F., Pelosi, F., Oral, H., Knight, B. P., Strickberger, S. A., & Morady, F. (2001). Effects of simultaneous atrioventricular pacing on atrial refractoriness and atrial fibrillation inducibility: role of atrial mechanoelectrical feedback. Journal of Cardiovascular Electrophysiology, 12(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  7. Manios, E. G., Mavrakis, H. E., Kanoupakis, E. M., Kallergis, E. M., Kafarakis, P. K., & Vardas, P. E. (2006). Evidence of mechanoelectric feedback in the atria of patients with atrioventricular nodal reentrant tachycardia. Journal of Interventional Cardiac Electrophysiology, 16(1), 51–57.

    Article  PubMed  Google Scholar 

  8. Klein, L. S., Miles, W. M., & Zipes, D. P. (1990). Effect of atrioventricular interval during pacing or reciprocating tachycardia on atrial size, pressure, and refractory period. Contraction-excitation feedback in human atrium. Circulation, 82(1), 60–68.

    Article  CAS  PubMed  Google Scholar 

  9. Efremidis, M., Sideris, A., Prappa, E., Filippatos, G., Athanasias, D., Kardara, D., Sioras, I., & Kardaras, F. (1999). Effect of atrial pressure increase on effective refractory period and vulnerability to atrial fibrillation in patients with lone atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 3(4), 307–310.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y. J., Tai, C. T., Chiou, C. W., Wen, Z. C., Chan, P., Lee, S. H., et al. (1999). Inducibility of atrial fibrillation during atrioventricular pacing with varying intervals: role of atrial electrophysiology and the autonomic nervous system. Journal of Cardiovascular Electrophysiology, 10(12), 1578–1585.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts-Thomson, K. C., John, B., Worthley, S. G., Brooks, A. G., Stiles, M. K., Lau, D. H., Kuklik, P., Shipp, N. J., Kalman, J. M., & Sanders, P. (2009). Left atrial remodeling in patients with atrial septal defects. Heart Rhythm, 6(7), 1000–1006.

    Article  PubMed  Google Scholar 

  12. Anne, W., Willems, R., Roskams, T., Sergeant, P., Herijgers, P., Holemans, P., et al. (2005). Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovascular Research, 67, 655–666.

    Article  CAS  PubMed  Google Scholar 

  13. Sanders, P., Morton, J. B., Davidson, N. C., Spence, S. J., Vohra, J. K., Sparks, P. B., et al. (2003). Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation, 108, 1461–1468.

    Article  PubMed  Google Scholar 

  14. Vaziri, S. M., Larson, M. G., Lauer, M. S., Benjamin, E. J., & Levy, D. (1995). Influence of blood pressure on left atrial size. The Framingham Heart Study. Hypertension, 25, 1155–1160.

    Article  CAS  PubMed  Google Scholar 

  15. De Jong, A. M., Maass, A. H., Oberdorf-Maass, S. U., Van Veldhuisen, D. J., Van Gilst, W. H., & Van Gelder, I. C. (2011). Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovascular Research, 89(4), 754–765.

    Article  PubMed  Google Scholar 

  16. Kuppahally, S. S., Akoum, N., Burgon, N. S., Badger, T. J., Kholmovski, E. G., Vijayakumar, S., et al. (2010). Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circulation Cardiovascular Imaging, 3(3), 231–239.

    Article  PubMed  Google Scholar 

  17. Saha, S. K., Anderson, P. L., Caracciolo, G., Kiotsekoglou, A., Wilansky, S., Govind, S., et al. (2011). Global left atrial strain correlates with CHADS2 risk score in patients with atrial fibrillation. Journal of the American Society of Echocardiography, 24(5), 506–512.

    Article  PubMed  Google Scholar 

  18. Shaikh, A. Y., Maan, A., Khan, U. A., Aurigemma, G. P., Hill, J. C., Kane, J. L., et al. (2012). Speckle echocardiographic left atrial strain and stiffness index as predictors of maintenance of sinus rhythm after cardioversion for atrial fibrillation: a prospective study. Cardiovascular Ultrasound, 10, 48.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Montserrat, S., Gabrielli, L., Bijnens, B., Borràs, R., Berruezo, A., Poyatos, S., et al. (2015). Left atrial deformation predicts success of first and second percutaneous atrial fibrillation ablation. Heart Rhythm, 12(1), 11–18.

    Article  PubMed  Google Scholar 

  20. Courtois, M., Fattal, P. G., Kovács, S. J., Jr., Tiefenbrunn, A. J., & Ludbrook, P. A. (1995). Anatomically and physiologically based reference level for measurement of intracardiac pressures. Circulation, 92(7), 1994–2000.

    Article  CAS  PubMed  Google Scholar 

  21. Ishimatsu, T., Hayano, M., Hirata, T., Iliev, I. I., Komiya, N., Nakao, K., et al. (1999). Electrophysiological properties of the left atrium evaluated by coronary sinus pacing in patients with atrial fibrillation. Pacing and Clinical Electrophysiology, 22(12), 1739–1746.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, M. C., Guo, G. B., & Chang, H. W. (2002). Atrial electrophysiological properties evaluated by right and left atrial pacing in patients with or without atrial fibrillation. Japanese Heart Journal, 43(3), 231–240.

    Article  PubMed  Google Scholar 

  23. Lang, R. M., Bierig, M., Devereux, R. B., Flachskampf, F. A., Foster, E., Pellikka, P. A., Picard, M. H., Roman, M. J., Seward, J., Shanewise, J., Solomon, S., Spencer, K. T., St John Sutton, M., Stewart, W., & American Society of Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography; European Society of Cardiology. (2006). Recommendations for chamber quantification. European Journal of Echocardiography, 7(2), 79–108.

    Article  PubMed  Google Scholar 

  24. Nagueh, S. F., Appleton, C. P., Gillebert, T. C., Marino, P. N., Oh, J. K., Smiseth, O. A., Waggoner, A. D., Flachskampf, F. A., Pellikka, P. A., & Evangelista, A. (2009). Recommendations for the evaluation of left ventricular diastolic function by echocardiography. European Journal of Echocardiography, 10, 165–193.

    Article  PubMed  Google Scholar 

  25. Serri, K., Reant, P., Lafitte, M., Berhouet, M., Le Bouffos, V., Roudaut, R., & Lafitte, S. (2006). Global and regional myocardial function quantification by two dimensional strain. Journal of the American College of Cardiology, 47, 1175–1181.

    Article  PubMed  Google Scholar 

  26. Mor-Avi, V., Lang, R. M., Badano, L. P., Belohlavek, M., Cardim, N. M., Derumeaux, G., Galderisi, M., Marwick, T., Nagueh, S. F., Sengupta, P. P., Sicari, R., Smiseth, O. A., Smulevitz, B., Takeuchi, M., Thomas, J. D., Vannan, M., Voigt, J. U., & Zamorano, J. L. (2011). Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. European Journal of Echocardiography, 12(3), 167–205.

    Article  PubMed  Google Scholar 

  27. Kurt, M., Wang, J., Torre-Amione, G., & Nagueh, S. F. (2009). Left atrial function in diastolic heart failure. Circulation Cardiovascular Imaging, 2(1), 10–15.

    Article  PubMed  Google Scholar 

  28. Yoon, Y. E., Kim, H., Kim, S., Kim, S. H., Park, J., Park, K., Choi, S., Kim, M., Kim, H., & Cho, G. (2012). Left atrial mechanical function and stiffness in patients with paroxysmal atrial fibrillation. Journal of Cardiovascular Ultrasound, 20(3), 140–145.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chadaide, S., Domsik, P., Kalapos, A., Sághy, L., Forster, T., & Nemes, A. (2013). Three-dimensional speckle tracking echocardiography-derived left atrial strain parameters are reduced in patients with atrial fibrillation (results from the MAGYAR-path study). Echocardiography, 30(9), 1078–1083.

    PubMed  Google Scholar 

  30. Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S., et al. (2011). Electroanatomic properties of the pulmonary veins: slowed conduction, low voltage and altered refractoriness in AF patients. Journal of Cardiovascular Electrophysiology, 22(10), 1083–1091.

    Article  PubMed  Google Scholar 

  31. Stiles, M. K., John, B., Wong, C. X., Kuklik, P., Brooks, A. G., Lau, D. H., et al. (2009). Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the “second factor”. Journal of the American College of Cardiology, 53(14), 1182–1191.

    Article  PubMed  Google Scholar 

  32. Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S. J., et al. (2012). Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. Journal of Cardiovascular Electrophysiology, 23(3), 232–238.

    Article  PubMed  Google Scholar 

  33. Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovascular Research, 32(1), 3–14.

    Article  CAS  PubMed  Google Scholar 

  34. Satoh, T., & Zipes, D. P. (1996). Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. Journal of Cardiovascular Electrophysiology, 7, 833–842.

    Article  CAS  PubMed  Google Scholar 

  35. Ravelli, F., Masè, M., del Greco, M., Marini, M., & Disertori, M. (2011). Acute atrial dilatation slows conduction and increases AF vulnerability in the human atrium. Journal of Cardiovascular Electrophysiology, 22(4), 394–401.

    Article  PubMed  Google Scholar 

  36. Lau, C. P., Leung, W. H., Wong, C. K., & Cheng, C. H. (1990). Haemodynamics of induced atrial fibrillation: a comparative assessment with sinus rhythm, atrial and ventricular pacing. European Heart Journal, 11(3), 219–224.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Pap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ágoston, G., Szilágyi, J., Bencsik, G. et al. Impaired adaptation to left atrial pressure increase in patients with atrial fibrillation. J Interv Card Electrophysiol 44, 113–118 (2015). https://doi.org/10.1007/s10840-015-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0032-2

Keywords

Navigation