Skip to main content
Log in

Superior efficacy of pulmonary vein isolation with online contact force measurement persists after the learning period: a prospective case control study

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Use of online contact force (CF) measurement during circumferential pulmonary vein (PV) isolation (CPVI) for atrial fibrillation (AF) has demonstrated improvements in procedural parameters and mid-term clinical outcome. However, it is unknown if experience gained with CF measuring catheters improves the efficacy of subsequent CPVI procedures performed without CF measurement.

Methods

This prospective trial compared procedural results of CPVI performed without a CF measuring catheter to a control group performed with a CF measuring catheter, by an operator with prior experience with CF technology..

Results

Thirty-six eligible paroxysmal (n = 27) or persistent (n = 9) AF patients were consecutively enrolled. Twelve patients underwent CPVI with the non-CF catheter (CF− group) in a recall period and 24 with the CF catheter (CF+ group). After the first circumferential lesion set, the number of PV pairs requiring additional touch-up lesions to achieve electrical isolation was significantly less in the CF+ group (2 of 48 (4.2 %) vs. 7 of 24 (29.2 %) in the CF+ and CF− groups, respectively, p = 0.005). The procedure time was significantly lower in the CF+ group (117.9 ± 23.3 vs. 134.1 ± 25.3 min, p = 0.033). Radiofrequency (RF) and fluoroscopy time did not differ between groups (31.5 ± 7.1 vs. 31.8 ± 7.0 min and 11.8 ± 5.6 vs. 11.0 ± 5.8 min in the CF+ and the CF− group, respectively)

Conclusions

With the use of online CF measurement, PV isolation is more frequently complete following the first circumferential lesion set. A previous learning period with direct CF feedback is not a substitute for real-time direct CF measurement to maintain this advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., et al. (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Heart Rhythm, 9, 632–696.

    Article  PubMed  Google Scholar 

  2. Haines, D. E. (1991). Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact pressure and duration of energy delivery. Journal of Cardiovascular Electrophysiology, 2, 509–515.

    Article  Google Scholar 

  3. Avitall, B., Mughal, K., Hare, J., Helms, R., & Krum, D. (1997). The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing and Clinical Electrophysiology, 20, 2899–2910.

    Article  CAS  PubMed  Google Scholar 

  4. Strickberger, S. A., Vorperian, V. R., Man, K. C., Williamson, B. D., Kalbfleisch, S. J., Hasse, C., et al. (1994). Relation between impedance and endocardial contact during radiofrequency catheter ablation. American Heart Journal, 128, 226–229.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, X., Walcott, G. P., Hall, J. A., Rollins, D. L., Smith, W. M., Kay, G. N., et al. (2000). Electrode impedance: an indicator of electrode-tissue contact and lesion dimensions during linear ablation. Journal of Interventional Cardiac Electrophysiology, 4, 645–654.

    Article  CAS  PubMed  Google Scholar 

  6. Nath, S., DiMarco, J. P., Gallop, R. G., McRury, I. D., & Haines, D. E. (1996). Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation. American Journal of Cardiology, 77, 765–767.

    Article  CAS  PubMed  Google Scholar 

  7. Eick, O. J., Wittkampf, F. H., Bronneberg, T., & Schumacher, B. (1998). The LETR-Principle: a novel method to assess electrode-tissue contact in radiofrequency ablation. Journal of Cardiovascular Electrophysiology, 9, 1180–1185.

    Article  CAS  PubMed  Google Scholar 

  8. Wittkampf, F. H., & Nakagawa, H. (2006). RF catheter ablation: lessons on lesions. Pacing and Clinical Electrophysiology, 29, 1285–1297.

    Article  PubMed  Google Scholar 

  9. Wakili, R., Clauss, S., Schmidt, V., Ulbrich, M., Hahnefeld, A., Schüssler, F., Siebermair, J., Kääb, S., & Estner, H. L. (2014). Impact of real-time contact force and impedance measurement in pulmonary vein isolation procedures for the treatment of atrial fibrillation. Clinical Research in Cardiology, 103, 97–106.

    Article  PubMed  Google Scholar 

  10. Di Biase, L., Paoletti, P. A., Mohanty, P., Goldenberg, A. S., Grifoni, G., Santangeli, P., et al. (2014). Visual, tactile, and contact force feedback: which one is more important for catheter ablation? Results from an in vitro experimental study. Heart Rhythm, 11, 506–513.

    Article  PubMed  Google Scholar 

  11. Kuck, K. H., Reddy, V. Y., Schmidt, B., Natale, A., Neuzil, P., Saoudi, N., et al. (2012). A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm, 9, 18–23.

    Article  PubMed  Google Scholar 

  12. Park, C. I., Lehrmann, H., Keyl, C., Weber, R., Schiebeling, J., Allgeier, J., et al. (2014). Mechanisms of pulmonary vein reconnection after radiofrequency ablation of atrial fibrillation: the deterministic role of contact force and interlesion distance. Journal of Cardiovascular Electrophysiology, 25, 701–708.

    Article  PubMed  Google Scholar 

  13. Martinek, M., Lemes, C., Sigmund, E., Derndorfer, M., Aichinger, J., Winter, S., et al. (2012). Clinical impact of an open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation. Pacing and Clinical Electrophysiology, 35, 1312–1318.

    Article  PubMed  Google Scholar 

  14. Sciarra, L., Golia, P., Natalizia, A., De Ruvo, E., Dottori, S., Scarà, A., et al. (2014). Which is the best catheter to perform atrial fibrillation ablation? A comparison between standard ThermoCool, SmartTouch, and Surround Flow catheters. Journal of Interventional Cardiac Electrophysiology, 39, 193–200.

    PubMed  Google Scholar 

  15. Marijon E., Fazaa S., Narayanan K., Guy-Moyat B., Bouzeman A., Providencia R., et al. (2013). Real-time contact force sensing for pulmonary vein isolation in the setting of paroxysmal atrial fibrillation: procedural and 1-year results. Journal of Cardiovascular Electrophysiology. 25(2):130–137.

  16. Wutzler, A., Huemer, M., Parwani, A. S., Blaschke, F., Haverkamp, W., & Boldt, L. H. (2014). Contact force mapping during catheter ablation for atrial fibrillation: procedural data and one-year follow-up. Archives of Medical Science, 10, 266–272.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kimura, M., Sasaki, S., Owada, S., Horiuchi, D., Sasaki, K., Itoh, T., et al. (2014). Comparison of lesion formation between contact force-guided and non-guided circumferential pulmonary vein isolation: a prospective, randomized study. Heart Rhythm, 11, 984–991.

    Article  PubMed  Google Scholar 

  18. Haldar, S., Jarman, J. W., Panikker, S., Jones, D. G., Salukhe, T., Gupta, D., et al. (2013). Contact force sensing technology identifies sites of inadequate contact and reduces acute pulmonary vein reconnection; a prospective case control study. International Journal of Cardiology, 168, 1160–1166.

    Article  PubMed  Google Scholar 

  19. Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., Saoudi, N., Herrera, C., et al. (2012). The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm, 9, 1789–1795.

    Article  PubMed  Google Scholar 

  20. Neuzil, P., Reddy, V. Y., Kautzner, J., Petru, J., Wichterle, D., Shah, D., et al. (2013). Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circulation. Arrhythmia and Electrophysiology, 6, 327–333.

    Article  PubMed  Google Scholar 

  21. Ren, J. F., Callans, D. J., Schwartzman, D., Michele, J. J., & Marchlinski, F. E. (2001). Changes in local wall thickness correlate with pathologic lesion size following radiofrequency catheter ablation: an intracardiac echocardiographic imaging study. Echocardiography, 18, 503–507.

    Article  CAS  PubMed  Google Scholar 

  22. Andrade, J. G., Monir, G., Pollak, S. J., Khairy, P., Dubuc, M., Roy, D., Talajic, M., Deyell, M., Rivard, L., Thibault, B., Guerra, P. G., Nattel, S., & Macle, L. (2014). Pulmonary vein isolation using “contact force” ablation: the effect on dormant conduction and long-term freedom from recurrent atrial fibrillation—a prospective study. Heart Rhythm, 11, 1919–1924.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M., Saenen, J.B., Bories, W. et al. Superior efficacy of pulmonary vein isolation with online contact force measurement persists after the learning period: a prospective case control study. J Interv Card Electrophysiol 43, 287–296 (2015). https://doi.org/10.1007/s10840-015-0006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0006-4

Keywords

Navigation