Skip to main content
Log in

Combined identification of septal flash and absence of myocardial scar by cardiac magnetic resonance imaging improves prediction of response to cardiac resynchronization therapy

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript


Background and aims of study

Septal flash (SF) describes early inward motion of the ventricular septum in patients with left bundle branch block (LBBB), and correction corresponds to increased response to cardiac resynchronization therapy (CRT). SF has traditionally been assessed by echocardiography. We sought to determine if cardiac magnetic resonance (CMR) imaging could identify SF and if the additional assessment of scar would improve the ability of CMR to predict CRT response.


Fifty-two patients with LBBB and heart failure underwent prospective CMR scanning prior to CRT implantation. The presence of SF was assessed visually and by using endocardial contour-tracking software. Presence and extent of myocardial scar was assessed by delayed enhancement imaging during CMR. The association between SF, scar and reverse remodelling (RR) at 6 months was explored.


RR rate to CRT at 6 months was 52 %. CMR-derived SF was identified in 24 (46 %) patients. RR was seen in more patients with SF than those without (88 % vs 21 %; P < 0.001). The absence of scar combined with the presence of SF had 96 % specificity for predicting RR. In a multivariate regression model, the presence of SF was the only independent predictor of RR.


SF can be assessed by CMR and predicts increased response to CRT. The additional value of CMR is the assessment of scar. The presence of SF with no scar is a highly specific predictor of CRT response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



Septal flash


Cardiac resynchronization therapy


Left bundle branch block




Cardiac magnetic resonance imaging


Non-ischaemic cardiomyopathy


Ischaemic cardiomyopathy


New York Heart Association


  1. Abraham, W. T., Fisher, W. G., Smith, A. L., et al. (2002). Cardiac resynchronization in chronic heart failure. The New England Journal of Medicine, 346, 1845–1853.

    Article  PubMed  Google Scholar 

  2. Bristow, M. R., Saxon, L. A., Boehmer, J., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350, 2140–2150.

    Article  CAS  PubMed  Google Scholar 

  3. Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352, 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  4. Brignole, M., Auricchio, A., Baron-Esquivias, G., et al. (2013). 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). European Heart Journal, 34, 2281–2329.

    Article  PubMed  Google Scholar 

  5. Mollema, S. A., Bleeker, G. B., van der Wall, E. E., Schalij, M. J., & Bax, J. J. (2007). Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. The American Journal of Cardiology, 100, 1665–1670.

    Article  PubMed  Google Scholar 

  6. Ypenburg, C., van Bommel, R. J., Borleffs, C. J., et al. (2009). Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. Journal of the American College of Cardiology, 53, 483–490.

    Article  PubMed  Google Scholar 

  7. Chung, E. S., Leon, A. R., Tavazzi, L., et al. (2008). Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation, 117, 2608–2616.

    Article  PubMed  Google Scholar 

  8. Kerckhoffs, R. C., Faris, O. P., Bovendeerd, P. H., et al. (2005). Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments. American Journal of Physiology. Heart and Circulatory Physiology, 289, H1889–H1897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Voigt, J. U., Schneider, T. M., Korder, S., et al. (2009). Apical transverse motion as surrogate parameter to determine regional left ventricular function inhomogeneities: a new, integrative approach to left ventricular asynchrony assessment. European Heart Journal, 30, 959–968.

    Article  PubMed  Google Scholar 

  10. Parsai, C., Bijnens, B., Sutherland, G. R., et al. (2009). Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. European Heart Journal, 30, 940–949.

    Article  PubMed  Google Scholar 

  11. De Boeck, B. W., Teske, A. J., Meine, M., et al. (2009). Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response. European Journal of Heart Failure, 11, 863–871.

    Article  PubMed  Google Scholar 

  12. Kirn, B., Jansen, A., Bracke, F., van Gelder, B., Arts, T., & Prinzen, F. W. (2008). Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. American Journal of Physiology. Heart and Circulatory Physiology, 295, H640–H646.

    Article  CAS  PubMed  Google Scholar 

  13. Kapetanakis, S., Kearney, M. T., Siva, A., Gall, N., Cooklin, M., & Monaghan, M. J. (2005). Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation, 112, 992–1000.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H., & Amini, A. A. (2012). Cardiac motion and deformation recovery from MRI: a review. IEEE Transactions on Medical Imaging, 31, 487–503.

    Article  PubMed  Google Scholar 

  15. Knol, M. J., Le Cessie, S., Algra, A., Vandenbroucke, J. P., & Groenwold, R. H. (2012). Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ: Canadian Medical Association Journal = journal de l'Association Medicale Canadienne, 184, 895–899.

    Article  Google Scholar 

  16. Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011). Defining left bundle branch block in the era of cardiac resynchronization therapy. The American Journal of Cardiology, 107, 927–934.

    Article  PubMed  Google Scholar 

  17. Tsao, J., Boesiger, P., & Pruessmann, K. P. (2003). k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 50, 1031–1042.

    Article  Google Scholar 

  18. Bleeker, G. B., Kaandorp, T. A., Lamb, H. J., et al. (2006). Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation, 113, 969–976.

    Article  PubMed  Google Scholar 

  19. Duckett, S. G., Camara O., Ginks, M. R., et al. (2012). Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronisation therapy. Europace, 14, 99–106.

  20. Muellerleile, K., Stork, A., Bansmann, M., et al. (2008). Detection of mechanical ventricular asynchrony by high temporal resolution cine MRI. European Radiology, 18, 1329–1337.

    Article  PubMed  Google Scholar 

  21. Marsan, N. A., Westenberg, J. J., Ypenburg, C., et al. (2009). Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. European Heart Journal, 30, 2360–2367.

    Article  PubMed  Google Scholar 

  22. Petryka, J., Misko, J., Przybylski, A., et al. (2012). Magnetic resonance imaging assessment of intraventricular dyssynchrony and delayed enhancement as predictors of response to cardiac resynchronization therapy in patients with heart failure of ischaemic and non-ischaemic etiologies. European Journal of Radiology, 81, 2639–2647.

    Article  PubMed  Google Scholar 

  23. Stavrakis, S., Lazzara, R., & Thadani, U. (2012). The benefit of cardiac resynchronization therapy and QRS duration: a meta-analysis. Journal of Cardiovascular Electrophysiology, 23, 163–168.

    Article  PubMed  Google Scholar 

  24. Grant, R. P., & Dodge, H. T. (1956). Mechanisms of QRS complex prolongation in man; left ventricular conduction disturbances. The American Journal of Medicine, 20, 834–852.

    Article  CAS  PubMed  Google Scholar 

  25. Strauss, D. G., Selvester, R. H., Lima, J. A., et al. (2008). ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circulation. Arrhythmia and Electrophysiology, 1, 327–336.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Andersson, L. G., Wu, K. C., Wieslander, B., et al. (2013). Left ventricular mechanical dyssynchrony by cardiac magnetic resonance is greater in patients with strict vs nonstrict electrocardiogram criteria for left bundle-branch block. American Heart Journal, 165, 956–963.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Risum, N., Strauss, D., Sogaard, P., et al. (2013). Left bundle-branch block: the relationship between electrocardiogram electrical activation and echocardiography mechanical contraction. American Heart Journal, 166, 340–348.

    Article  PubMed  Google Scholar 

  28. Auricchio, A., Fantoni, C., Regoli, F., et al. (2004). Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation, 109, 1133–1139.

    Article  PubMed  Google Scholar 

  29. Sohal, M., Shetty, A., Duckett, S. G., et al. (2013). Non-invasive assessment of LV contraction patterns using CMR to identify responders to CRT. JACC Cardiovascular Imaging, 6, 864–873.

  30. Bilchick, K. C., Kamath, S., DiMarco, J. P., & Stukenborg, G. J. (2010). Bundle-branch block morphology and other predictors of outcome after cardiac resynchronization therapy in Medicare patients. Circulation, 122, 2022–2030.

    Article  PubMed Central  PubMed  Google Scholar 

  31. McDonald, I. G. (1973). Echocardiographic demonstration of abnormal motion of the interventricular septum in left bundle branch block. Circulation, 48, 272–280.

    Article  CAS  PubMed  Google Scholar 

  32. Little, W. C., Reeves, R. C., Arciniegas, J., Katholi, R. E., & Rogers, E. W. (1982). Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circulation, 65, 1486–1491.

    Article  CAS  PubMed  Google Scholar 

  33. Parsai, C., Baltabaeva, A., Anderson, L., Chaparro, M., Bijnens, B., & Sutherland, G. R. (2009). Low-dose dobutamine stress echo to quantify the degree of remodelling after cardiac resynchronization therapy. European Heart Journal, 30, 950–958.

    Article  PubMed  Google Scholar 

Download references

Competing interests

Dr Sohal receives an educational grant from St Jude Medical; Dr Chen receives an educational grant from Medtronic; Dr Rinaldi receives funding from St Jude Medical and Medtronic; Prof Razavi receives an investigator led grant from Philips Healthcare.

Grant support

Supported in part by the NIHR Biomedical Research Centre at Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Manav Sohal or C. Aldo Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohal, M., Amraoui, S., Chen, Z. et al. Combined identification of septal flash and absence of myocardial scar by cardiac magnetic resonance imaging improves prediction of response to cardiac resynchronization therapy. J Interv Card Electrophysiol 40, 179–190 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: