Which is the best catheter to perform atrial fibrillation ablation? A comparison between standard ThermoCool, SmartTouch, and Surround Flow catheters

Abstract

Introduction

Catheter ablation (CA) is an established therapy for atrial fibrillation (AF). The SmartTouch catheter (STc) provides information about catheter tip to tissue contact force (CF). The Surround Flow catheter (SFc) provides a uniform cooling of the tip during ablation. We sought to analyze the impact of STc and SFc on CA of paroxysmal AF in terms of feasibility and acute efficacy.

Methods and results

Sixty-three patients (mean age 57.6 ± 9.8 years, 53 males) with paroxysmal AF underwent pulmonary veins (PVs) antral isolation, by using standard ThermoCool catheter (TCc) in 21, STc in 21, and SFc in 21. Total procedural, fluoroscopy, and radiofrequency (RF) delivery times; percentage of persistently deconnected PVs after 30 min; and percentage of isolated PVs at the end of the procedure were measured.

The use of both STc and SFc obtained a reduction of fluoroscopy time (TCc 34 ± 18 min, STc 20 ± 10 min, p < 0.001; SFc 21 ± 13 min, p = 0.02 vs TCc) and RF time (TCc 41 ± 13 min, STc 30 ± 14 min, p = 0.013; SFc 30 ± 9 min, p < 0.01 vs TCc). The use of STc resulted in a reduction of procedural time (TCc 181 ± 53 min, STc 140 ± 53 min, p < 0.001; SFc 170 ± 51 min, p = NS vs TCc). The percentage of isolated PVs was comparable between groups (TCc 96 % vs STc 98 % vs SFc 96 %; p = NS). The percentage of deconnected PVs at 30 min was lower in TCc (89 %) than in STc (95 %) and in SFc (95 %) group (p < 0.05).

Conclusions

Both STc and SFc allowed a simplification of CA of paroxysmal AF. In addition, they reduced early PVs reconnection.

Condensed abstract

Sixty-three patients with paroxysmal AF underwent ablation by standard ThermoCool, SmartTouch, or Surround Flow catheter. Both the SmartTouch and the Surround Flow significantly reduced radiofrequency and fluoroscopy times, as well as pulmonary veins reconnection rate at 30 min. Moreover, the SmartTouch reduced overall duration of the procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., Crijns, H. J. G., Damiano, R. J., Davies, D. W., DiMarco, J., Edgerton, J., Ellenbogen, K., Ezekowitz, M. D., Haines, D. E., Haissaguerre, M., Hindricks, G., Iesaka, Y., Jackman, W., Jalife, J., Jais, P., Kalman, J., Keane, D., Kim, Y. H., Kirchhof, P., Klein, G., Kottkamp, H., Kumagai, K., Lindsay, B. D., Mansour, M., Marchlinski, F. E., McCarthy, P. M., Mont, J. L., Morady, F., Nademanee, K., Nakagawa, H., Natale, A., Nattel, S., Packer, D., Pappone, C., Prystowsky, E., Raviele, A., Reddy, V., Ruskin, J. N., Shemin, R. J., Tsao, H. M., & Wilber, D. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace, 14, 528–606.

    PubMed  Article  Google Scholar 

  2. 2.

    Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Le Mouroux, A., Le Metayer, P., & Clementy, J. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med, 339, 659–666.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Haissaguerre, M., Jais, P., Shah, D. C., Garrigue, S., Takahashi, A., Lavergne, T., Hocini, M., Peng, J. T., Roudaut, R., & Clementy, J. (2000). Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation, 101, 1409–1417.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., Salvati, A., Dicandia, C., Mazzone, P., Santinelli, V., Gulletta, S., & Chierchia, S. (2000). Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation, 102, 2619–2628.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Oral, H., Scharf, C., Chugh, A., Hall, B., Cheung, P., Good, E., Veerareddy, S., Pelosi, F., Jr., & Morady, F. (2003). Catheter ablation for paroxysmal atrial fibrillation: segmental pulmonary vein ostial ablation versus left atrial ablation. Circulation, 108, 2355–2360.

    PubMed  Article  Google Scholar 

  6. 6.

    Cappato, R., Negroni, S., Pecora, D., Bentivegna, S., Lupo, P. P., Carolei, A., Esposito, C., Furlanello, F., & De Ambroggi, L. (2003). Prospective assessment of late conduction recurrence across radiofrequency lesions producing electrical disconnection at the pulmonary vein ostium in patients with atrial fibrillation. Circulation, 108, 1599–1604.

    PubMed  Article  Google Scholar 

  7. 7.

    Nanthakumar, K., Plumb, V. J., Epstein, A. E., Veenhuyzen, G. D., Link, D., & Kay, G. N. (2004). Resumption of electrical conduction in previously isolated pulmonary veins: rationale for a different strategy? Circulation, 109, 1226–1229.

    PubMed  Article  Google Scholar 

  8. 8.

    Ouyang, F., Antz, M., Ernst, S., Hachiya, H., Mavrakis, H., Deger, F. T., Schaumann, A., Chun, J., Falk, P., Hennig, D., Liu, X., Bansch, D., & Kuck, K. H. (2005). Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation, 111, 127–135.

    PubMed  Article  Google Scholar 

  9. 9.

    Verma, A., Kilicaslan, F., Pisano, E., Marrouche, N. F., Fanelli, R., Brachmann, J., Geunther, J., Potenza, D., Martin, D. O., Cummings, J., Burkhardt, J. D., Saliba, W., Schweikert, R. A., & Natale, A. (2005). Response of atrial fibrillation to pulmonary vein antrum isolation is directly related to resumption and delay of pulmonary vein conduction. Circulation, 112, 627–635.

    PubMed  Article  Google Scholar 

  10. 10.

    Thiagalingam, A., D’Avila, A., McPherson, C., Malchano, Z., Ruskin, J., & Reddy, V. Y. (2007). Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation. J Cardiovasc Electrophysiol, 18, 318–325.

    PubMed  Article  Google Scholar 

  11. 11.

    Yokoyama, K., Nakagawa, H., Shah, D. C., Lambert, H., Leo, G., Aeby, N., Ikeda, A., Pitha, J. V., Sharma, T., Lazzara, R., & Jackman, W. M. (2008). Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythmia Electrophysiol, 1, 354–362.

    Article  Google Scholar 

  12. 12.

    Nakagawa, H., Ikeda, A., Govari, A., Ephrath, Y., Ariel, G., Pitha, J. V., Sharma, T., Lazzara, R., & Jackman, W. M. (2009). Electrogram amplitude and impedance are poor predictors of electrode-tissue contact force for radiofrequency ablation (abstract). Heart Rhythm, 6, S12.

    Article  Google Scholar 

  13. 13.

    Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., Saoudi, N., Herrera, C., Jais, P., Hindricks, G., Peichl, P., Yulzari, A., Lambert, H., Neuzil, P., Natale, A., & Kuck, K. H. (2012). The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm, 9, 1789–1795.

    PubMed  Article  Google Scholar 

  14. 14.

    Cheema, A., Dong, J., Dalal, D., Marine, J. E., Henrikson, C. A., Spragg, D., Cheng, A., Nazarian, S., Bilchick, K., Sinha, S., Scherr, D., Almasry, I., Halperin, H., Berger, R., & Calkins, H. (2007). Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol, 18, 387–391.

    PubMed  Article  Google Scholar 

  15. 15.

    Stabile, G., Scaglione, M., Del Greco, M., De Ponti, R., Bongiorni, M. G., Zoppo, F., Soldati, E., Marazzi, R., Marini, M., Gaita, F., Iuliano, A., & Bertaglia, E. (2012). Reduced fluoroscopy exposure during ablation of atrial fibrillation using a novel electroanatomical navigation system: a multicentre experience. Europace, 14, 60–65.

    PubMed  Article  Google Scholar 

  16. 16.

    Nakagawa, H., Yamanashi, W. S., Pitha, J. V., Arruda, M., Wang, X., Ohtomo, K., Beckman, K. J., McClelland, J. H., Lazzara, R., & Jackman, W. M. (1995). Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation, 91, 2264–2273.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Martinek, M., Lemes, C., Sigmund, E., Derndorfer, M., Aichinger, J., Winter, S., Nesser, H. J., & Puererfellner, H. (2012). Clinical impact of a new open-irrigated radiofrequency catheter with direct force measurement on atrial fibrillation ablation. Pacing Clin Electrophysiol, 35, 1312–1318.

    PubMed  Article  Google Scholar 

  18. 18.

    Haines, D. E. (1991). Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact force and duration of energy delivery. J Cardiovasc Electrophysiol, 2, 509–515.

    Article  Google Scholar 

  19. 19.

    Perna, F., Heist, E. K., Danik, S. B., Barrett, C. D., Ruskin, J. N., & Mansour, M. (2011). Assessment of catheter tip contact force resulting in cardiac perforation in swine atria using force sensing technology. Circ Arrhythmia Electrophysiol, 4, 218–224.

    Article  Google Scholar 

  20. 20.

    Di Biase, L., Natale, A., Barrett, C., Tan, C., Elayi, C. S., Ching, C. K., Wang, P., Al-Ahmad, A., Arruda, M., Burkhardt, J. D., Wisnoskey, B. J., Chowdhury, P., De Marco, S., Armaganijan, L., Litwak, K. N., Schweikert, R. A., & Cummings, J. E. (2009). Relationship between catheter forces, lesion characteristics, “popping”, and char formation: experience with robotic navigation system. J Cardiovasc Electrophysiol, 20, 436–440.

    PubMed  Article  Google Scholar 

  21. 21.

    Okumura, Y., Johnson, S. B., Bunch, T. J., Henz, B. D., O’Brien, C. J., & Packer, D. L. (2008). A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention. J Cardiovasc Electrophysiol, 19, 632–640.

    PubMed  Article  Google Scholar 

  22. 22.

    Shah, D. C., Schmidt, B., Arentz, T., Kuck, K.-H., Neuzil, P., Latcu, G., Hindricks, G., Kautzner, J., Aeby, N., & Lambert, H. (2009). Catheter contact force during human right and left atrial mapping in humans (abstract). Heart Rhythm, 6, S274.

    Article  Google Scholar 

  23. 23.

    Kuck, K. H., Reddy, V. Y., Schmidt, B., Natale, A., Neuzil, P., Saoudi, N., Kautzner, J., Herrera, C., Hindricks, G., Jais, P., Nakagawa, H., Lambert, H., & Shah, D. (2012). A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm, 9, 18–23.

    PubMed  Article  Google Scholar 

  24. 24.

    Scaglione, M., Blandino, A., Raimondo, C., Caponi, D., Di Donna, P., Toso, E., Ebrille, E., Cesarani, F., Ferrarese, E., & Gaita, F. (2012). Impact of ablation catheter irrigation design on silent cerebral embolism after radiofrequency catheter ablation of atrial fibrillation: results from a pilot study. J Cardiovasc Electrophysiol, 23, 801–805.

    PubMed  Article  Google Scholar 

  25. 25.

    Macle, L., Weerasooriya, R., Jais, P., Scavee, C., Raybaud, F., Choi, K.-J., Hocini, M., Clementy, J., & Haissaguerre, M. (2003). Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol 26, 26(Pt. II), 288–291.

    Article  Google Scholar 

  26. 26.

    Scaglione, M., Biasco, L., Caponi, D., Anselmino, M., Negro, A., Di Donna, P., Corleto, A., Montefusco, A., & Gaita, F. (2011). Visualization of multiple catheters with electroanatomical mapping reduces X-ray exposure during atrial fibrillation ablation. Europace, 13, 955–962.

    PubMed  Article  Google Scholar 

  27. 27.

    Kerst, G., Weig, H. J., Weretka, S., Seizer, P., Hofbeck, M., Gawaz, M., & Schreieck, J. (2012). Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm, 9, 709–714.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Samuele Guerzoni for his assistance in data collection.

Conflict of Interest

The authors declared no conflicts of interest.

A.N. and S.D. are employees of Biosense Webster Italy

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Golia.

Additional information

Luigi Sciarra and Paolo Golia equally contributed to the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sciarra, L., Golia, P., Natalizia, A. et al. Which is the best catheter to perform atrial fibrillation ablation? A comparison between standard ThermoCool, SmartTouch, and Surround Flow catheters. J Interv Card Electrophysiol 39, 193–200 (2014). https://doi.org/10.1007/s10840-014-9874-2

Download citation

Keywords

  • Atrial fibrillation
  • Catheter ablation
  • Ablation catheters
  • Irrigated ablation
  • Contact force