Abstract
Cardiac mechanical and electrical activities are tightly linked through an intra-cardiac regulatory loop (mechano-electric coupling). This connection is essential for normal heart function and auto-regulation. In diseases associated with altered myocardial mechanical properties or function, however, feedback from the mechanical environment to the origin and spread of excitation can result in deadly cardiac arrhythmias. Ventricular tachyarrhythmias, especially, are encountered in cardiac diseases associated with volume and pressure overload or changes in tissue mechanics. Little is known about the influence of changes in mechano-electric coupling on cardiac rhythm in these settings or the potential therapeutic benefit of its manipulation. Improved understanding may be central to explaining the origin of arrhythmias that occur with these pathologies and to the development of novel mechanics-based therapies. The present review explores the potential role of mechano-electric coupling in ventricular arrhythmogenesis, with a focus on the importance of non-uniformity in mechanical function for the induction and sustenance of ventricular tachyarrhythmias.
Similar content being viewed by others
References
Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198–205.
Kohl, P., Hunter, P., & Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 71(1), 91–138.
Kohl, P., Sachs, F., & Franz, M. R. (2011). Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press.
Taggart, P., & Sutton, P. M. (1999). Cardiac mechano-electric feedback in man: Clinical relevance. Progress in Biophysics and Molecular Biology, 71(1), 139–154.
Lab, M. J. (1982). Contraction–excitation feedback in myocardium. Physiological basis and clinical relevance. Circulation Research, 50(6), 757–766.
Barsheshet, A., Wang, P. J., Moss, A. J., Solomon, S. D., Al-Ahmad, A., McNitt, S., et al. (2011). Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Journal of the American College of Cardiology, 57(24), 2416–2423.
Drakos, S. G., Terrovitis, J. V., Nanas, J. N., Charitos, E. I., Ntalianis, A. S., Malliaras, K. G., et al. (2011). Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. The Annals of Thoracic Surgery, 91(3), 764–769.
Waxman, M. B., Wald, R. W., Finley, J. P., Bonet, J. F., Downar, E., & Sharma, A. D. (1980). Valsalva termination of ventricular tachycardia. Circulation, 62(4), 843–851.
Ambrosi, P., Habib, G., Kreitmann, B., Faugere, G., & Metras, D. (1995). Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet, 346(8976), 713.
Wei, J. Y., Greene, H. L., & Weisfeldt, M. L. (1980). Cough-facilitated conversion of ventricular tachycardia. American Journal of Cardiology, 45(1), 174–176.
Lee, Y. C., & Sutton, F. J. (1982). Valsalva termination of ventricular tachycardia. Circulation, 65(6), 1287–1288.
Taggart, P., Sutton, P., John, R., Lab, M., & Swanton, H. (1992). Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. British Heart Journal, 67(3), 221–229.
Franz, M. R. (1996). Mechano-electrical feedback in ventricular myocardium. Cardiovascular Research, 32(1), 15–24.
Franz, M. R., Burkhoff, D., Yue, D. T., & Sagawa, K. (1989). Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovascular Research, 23(3), 213–223.
Franz, M. R., Cima, R., Wang, D., Profitt, D., & Kurz, R. (1992). Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation, 86(3), 968–978.
Hansen, D. E., Craig, C. S., & Hondeghem, L. M. (1990). Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation, 81(3), 1094–1105.
Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., & Hansen, D. E. (1992). Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. The American Journal of Physiology, 263(2 Pt 2), H613–H621.
Bode, F., Franz, M., Wilke, I., Bonnemeier, H., Schunkert, H., & Wiegand, U. (2006). Ventricular fibrillation induced by stretch pulse: Implications for sudden death due to Commotio cordis. Journal of Cardiovascular Electrophysiology, 17(9), 1011–1017.
Seo, K., Inagaki, M., Nishimura, S., Hidaka, I., Sugimachi, M., Hisada, T., et al. (2010). Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circulation Research, 106(1), 176–184.
Chen, R. L., Penny, D. J., Greve, G., & Lab, M. J. (2004). Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventricle of anesthetized lambs. American Journal of Physiology. Heart and Circulatory Physiology, 286(3), H1008–H1014.
Greve, G., Lab, M. J., Chen, R., Barron, D., White, P. A., Redington, A. N., et al. (2001). Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: Evidence for arrhythmogenic right ventricular mechanoelectrical feedback. Experimental Physiology, 86(5), 651–657.
Reiter, M. J., Synhorst, D. P., & Mann, D. E. (1988). Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circulation Research, 62(3), 554–562.
Rosen, S., Lahorra, M., Cohen, M. V., & Buttrick, P. (1991). Ventricular fibrillation threshold is influenced by left ventricular stretch and mass in the absence of ischaemia. Cardiovascular Research, 25(6), 458–462.
Jalal, S., Williams, G. R., Mann, D. E., & Reiter, M. J. (1992). Effect of acute ventricular dilatation on fibrillation thresholds in the isolated rabbit heart. The American Journal of Physiology, 263(4 Pt 2), H1306–H1310.
Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H., & Kan, J. S. (1988). Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: Evidence for contraction–excitation feedback in humans. Circulation, 77(1), 70–77.
Reiter, M. J., Stromberg, K. D., Whitman, T. A., Adamson, P. B., Benditt, D. G., & Gold, M. R. (2013). Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: Insights from the REDUCEhf trial. Circulation. Arrhythmia and Electrophysiology, 6(2), 272–278.
Kusminsky, R. E. (2007). Complications of central venous catheterization. Journal of the American College of Surgeons, 204(4), 681–696.
Fiaccadori, E., Gonzi, G., Zambrelli, P., & Tortorella, G. (1996). Cardiac arrhythmias during central venous catheter procedures in acute renal failure: A prospective study. Journal of the American Society of Nephrology, 7(7), 1079–1084.
Bohm, A., Pinter, A., & Preda, I. (2002). Ventricular tachycardia induced by a pacemaker lead. Acta Cardiologica, 57(1), 23–24.
Lee, J. C., Epstein, L. M., Huffer, L. L., Stevenson, W. G., Koplan, B. A., & Tedrow, U. B. (2009). ICD lead proarrhythmia cured by lead extraction. Heart Rhythm, 6(5), 613–618.
Lindsay, A. C., Wong, T., Segal, O., & Peters, N. S. (2006). An unusual twist: Ventricular tachycardia induced by a loop in a right ventricular pacing wire. Quarterly Journal of Medicine, 99(5), 347–348.
Berdowski, J., Tijssen, J. G., & Koster, R. W. (2010). Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circulation. Arrhythmia and Electrophysiology, 3(1), 72–78.
Cayla, G., Macia, J. C., & Pasquie, J. L. (2007). Images in cardiovascular medicine. Precordial thump in the catheterization laboratory experimental evidence for Commotio cordis. Circulation, 115(11), e332.
Zipes, D. P., & Jalife, J. (2009). Cardiac electrophysiology: From cell to bedside. Philadelphia: Saunders.
Janse, M. J., & Wit, A. L. (1989). Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews, 69(4), 1049–1169.
Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovascular Research, 32(1), 3–14.
Reiter, M. J. (1996). Effects of mechano-electrical feedback: Potential arrhythmogenic influence in patients with congestive heart failure. Cardiovascular Research, 32(1), 44–51.
Kohl, P., Bollensdorff, C., & Garny, A. (2006). Effects of mechanosensitive ion channels on ventricular electrophysiology: Experimental and theoretical models. Experimental Physiology, 91(2), 307–321.
Kohl, P. (2009). Cardiac stretch-activated channels and mechano-electric transduction. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology: From cell to bedside (pp. 115–126). Philadelphia: Saunders.
Quinn, T. A., & Kohl, P. (2011). Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In P. Kohl, F. Sachs, & M. R. Franz (Eds.), Cardiac mechano-electric coupling and arrhythmias (pp. 160–167). Oxford: Oxford University Press.
Craelius, W., Chen, V., & el-Sherif, N. (1988). Stretch activated ion channels in ventricular myocytes. Bioscience Reports, 8(5), 407–414.
White, E., Boyett, M. R., & Orchard, C. H. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. The Journal of Physiology, 482(Pt 1), 93–107.
Lab, M. J. (1978). Depolarization produced by mechanical changes in normal and abnormal myocardium. The Journal of Physiology, 284(Suppl), 143P–144P.
White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., & Garnier, D. (1993). The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiology, 78(1), 65–78.
Zeng, T., Bett, G. C., & Sachs, F. (2000). Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 278(2), H548–H557.
Kohl, P., Nesbitt, A. D., Cooper, P. J., & Lei, M. (2001). Sudden cardiac death by Commotio cordis: role of mechano-electric feedback. Cardiovascular Research, 50(2), 280–289.
Akar, F. G., Laurita, K. R., & Rosenbaum, D. S. (2000). Cellular basis for dispersion of repolarization underlying reentrant arrhythmias. Journal of Electrocardiology, 33(Suppl), 23–31.
Nash, M. P., Bradley, C. P., Sutton, P. M., Clayton, R. H., Kallis, P., Hayward, M. P., et al. (2006). Whole heart action potential duration restitution properties in cardiac patients: A combined clinical and modelling study. Experimental Physiology, 91(2), 339–354.
Quinn, T. A., & Kohl, P. (2013). Combining wet and dry research: experience with model development for cardiac mechano-electric structure–function studies. Cardiovascular Research, 97(4), 601–611.
Quinn, T. A., & Kohl, P. (2011). Systems biology of the heart: Hype or hope? Annals of the New York Academy of Sciences, 1245(1), 40–43.
Garny, A., & Kohl, P. (2004). Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences, 1015(1), 133–143.
Li, W., Kohl, P., & Trayanova, N. (2004). Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D. Journal of Molecular Histology, 35(7), 679–686.
Quinn, T. A., Jin, H., & Kohl, P. (2011). Mechanically-induced premature ventricular excitation is mediated by cation non-selective stretch-activated channels and depends on the extent of local tissue deformation in isolated rabbit heart. Circulation, 124(21 Suppl), A13098.
Quinn, T. A., & Kohl, P. (2012). Critical window for mechanically-induced arrhythmias exists in time and in space. Circulation, 126(21 Suppl), A11162.
Calkins, H., Maughan, W. L., Weisman, H. F., Sugiura, S., Sagawa, K., & Levine, J. H. (1989). Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts. Circulation, 79(3), 687–697.
Dean, J. W., & Lab, M. J. (1990). Regional changes in ventricular excitability during load manipulation of the in situ pig heart. The Journal of Physiology, 429(1), 387–400.
Cheung, Y. F. (2012). The role of 3D wall motion tracking in heart failure. Nature Reviews Cardiology, 9(11), 644–657.
Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Y. L., et al. (2006). Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1843), 1367–1383.
Markhasin, V. S., Solovyova, O., Katsnelson, L. B., Protsenko, Y., Kohl, P., & Noble, D. (2003). Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Progress in Biophysics and Molecular Biology, 82(1–3), 207–220.
Coronel, R., Wilms-Schopman, F. J., & deGroot, J. R. (2002). Origin of ischemia-induced phase 1b ventricular arrhythmias in pig hearts. Journal of the American College of Cardiology, 39(1), 166–176.
Van Leuven, S. L., Waldman, L. K., McCulloch, A. D., & Covell, J. W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. The American Journal of Physiology, 267(6 Pt 2), H2348–H2362.
Theroux, P., Franklin, D., Ross, J., Jr., & Kemper, W. S. (1974). Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circulation Research, 35(6), 896–908.
Prinzen, F. W., Arts, T., Hoeks, A. P., & Reneman, R. S. (1989). Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflügers Archiv, 415(2), 220–229.
Gallagher, K. P., Gerren, R. A., Choy, M., Stirling, M. C., & Dysko, R. C. (1987). Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. The American Journal of Physiology, 253(4 Pt 2), H826–H837.
Sakai, K., Watanabe, K., & Millard, R. W. (1985). Defining the mechanical border zone: A study in the pig heart. The American Journal of Physiology, 249(1 Pt 2), H88–H94.
Hirche, H., Hoeher, M., & Risse, J. H. (1987). Inotropic changes in ischaemic and non-ischaemic myocardium and arrhythmias within the first 120 minutes of coronary occlusion in pigs. Basic Research in Cardiology, 82(Suppl 2), 301–310.
Barrabes, J. A., Garcia-Dorado, D., Padilla, F., Agullo, L., Trobo, L., Carballo, J., et al. (2002). Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Research in Cardiology, 97(6), 445–451.
Parker, K. K., Lavelle, J. A., Taylor, L. K., Wang, Z., & Hansen, D. E. (2004). Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. Journal of Applied Physiology, 97(1), 377–383.
Califf, R. M., Burks, J. M., Behar, V. S., Margolis, J. R., & Wagner, G. S. (1978). Relationships among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation, 57(4), 725–732.
Siogas, K., Pappas, S., Graekas, G., Goudevenos, J., Liapi, G., & Sideris, D. A. (1998). Segmental wall motion abnormalities alter vulnerability to ventricular ectopic beats associated with acute increases in aortic pressure in patients with underlying coronary artery disease. Heart, 79(3), 268–273.
Horner, S. M., Lab, M. J., Murphy, C. F., Dick, D. J., Zhou, B., & Harrison, F. G. (1994). Mechanically induced changes in action potential duration and left ventricular segment length in acute regional ischaemia in the in situ porcine heart. Cardiovascular Research, 28(4), 528–534.
Van Wagoner, D. R. (1993). Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circulation Research, 72(5), 973–983.
Tseng, G. N. (1992). Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. The American Journal of Physiology, 262(4 Pt 1), C1056–C1068.
Horner, S. M., Murphy, C. F., Coen, B., Dick, D. J., & Lab, M. J. (1996). Sympathomimetic modulation of load-dependent changes in the action potential duration in the in situ porcine heart. Cardiovascular Research, 32(1), 148–157.
Lu, F., Jun-Xian, C., Rong-Sheng, X., Jia, L., Ying, H., Li-Qun, Z., et al. (2007). The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace, 9(8), 578–584.
Durrer, J. D., Lie, K. I., van Capelle, F. J., & Durrer, D. (1982). Effect of sodium nitroprusside on mortality in acute myocardial infarction. The New England Journal of Medicine, 306(19), 1121–1128.
Mukherjee, D., Feldman, M. S., & Helfant, R. H. (1976). Nitroprusside therapy. Treatment of hypertensive patients with recurrent resting chest pain, ST-segment elevation, and ventricular arrhythmias. Journal of the American Medical Association, 235(22), 2406–2409.
Opthof, T., Sutton, P., Coronel, R., Wright, S., Kallis, P., & Taggart, P. (2012). The association of abnormal ventricular wall motion and increased dispersion of repolarization in humans is independent of the presence of myocardial infarction. Frontiers in Physiology, 3(Jul 3), Article 235.
Kohl, P., & Camelliti, P. (2012). Fibroblast–myocyte connections in the heart. Heart Rhythm, 9(3), 461–464.
de Bakker, J. M., & van Rijen, H. M. (2006). Continuous and discontinuous propagation in heart muscle. Journal of Cardiovascular Electrophysiology, 17(5), 567–573.
Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810.
Kizana, E., Ginn, S. L., Smyth, C. M., Boyd, A., Thomas, S. P., Allen, D. G., et al. (2006). Fibroblasts modulate cardiomyocyte excitability: implications for cardiac gene therapy. Gene Therapy, 13(22), 1611–1615.
Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428.
Goshima, K., & Tonomura, Y. (1969). Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Experimental Cell Research, 56(2), 387–392.
Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. (2010). Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020.
Walker, N. L., Burton, F. L., Kettlewell, S., Smith, G. L., & Cobbe, S. M. (2007). Mapping of epicardial activation in a rabbit model of chronic myocardial infarction. Journal of Cardiovascular Electrophysiology, 18(8), 862–868.
Saba, S., Mathier, M. A., Mehdi, H., Liu, T., Choi, B. R., London, B., et al. (2008). Dual-dye optical mapping after myocardial infarction: Does the site of ventricular stimulation alter the properties of electrical propagation? Journal of Cardiovascular Electrophysiology, 19(2), 197–202.
Stockbridge, L. L., & French, A. S. (1988). Stretch-activated cation channels in human fibroblasts. Biophysical Journal, 54(1), 187–190.
Kohl, P., & Noble, D. (1996). Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovascular Research, 32(1), 62–68.
Thompson, S. A., Copeland, C. R., Reich, D. H., & Tung, L. (2011). Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 123(19), 2083–2093.
Roden, D. M. (2008). Clinical practice. Long-QT syndrome. The New England Journal of Medicine, 358(2), 169–176.
Odening, K. E., Jung, B. A., Lang, C. N., Cabrera Lozoya, R., Ziupa, D., Menza, M., et al. (2013). Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits. Heart Rhythm, 10(10), 1533–1541.
Kohl, P. (2013). From ion channel to organismic phenotype: An example of integrative translational research into cardiac electromechanics. Heart Rhythm, 10(10), 1542–1543.
Ashikaga, H., van der Spoel, T. I., Coppola, B. A., & Omens, J. H. (2009). Transmural myocardial mechanics during isovolumic contraction. Journal of the American College of Cardiology Cardiovascular Imaging, 2(2), 202–211.
Gallacher, D. J., Van de Water, A., van der Linde, H., Hermans, A. N., Lu, H. R., Towart, R., et al. (2007). In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovascular Research, 76(2), 247–256.
Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., et al. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16(10), 1087–1096.
Trapero, I., Chorro, F. J., Such-Miquel, L., Canoves, J., Tormos, A., Pelechano, F., et al. (2008). Efectos de la estreptomicina en las modificaciones de la activacion miocardica durante la fibrilacion ventricular inducidas por el estiramiento [Effect of streptomycin on stretch-induced change in myocardial activation during ventricular fibrillation]. Revista Española de Cardiología, 61(2), 201–205.
Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Canoves, J., et al. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1860–H1869.
Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., et al. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206(1), 29–41.
Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., et al. (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. The Journal of General Physiology, 115(5), 583–598.
Bode, F., Sachs, F., & Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature, 409(6816), 35–36.
Trayanova, N. A. (2011). Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics. Circulation Research, 108(1), 113–128.
Trayanova, N. A., Constantino, J., & Gurev, V. (2010). Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology, 43(6), 479–485.
Jie, X., Gurev, V., & Trayanova, N. (2010). Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circulation Research, 106(1), 185–192.
Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299(1), H134–H143.
Hu, Y., Gurev, V., Constantino, J., Bayer, J. D., & Trayanova, N. A. (2013). Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PloS One, 8(4), e60287.
Calaghan, S. C., & White, E. (1999). The role of calcium in the response of cardiac muscle to stretch. Progress in Biophysics and Molecular Biology, 71(1), 59–90.
ter Keurs, H. E. (2012). The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H38–H50.
ter Keurs, H. E., & Boyden, P. A. (2007). Calcium and arrhythmogenesis. Physiological Reviews, 87(2), 457–506.
Allen, D. G., & Kentish, J. C. (1985). The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 17(9), 821–840.
Iribe, G., Ward, C. W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R. A., et al. (2009). Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circulation Research, 104(6), 787–795.
Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: rapid mechano-chemo transduction in heart. Science, 333(6048), 1440–1445.
Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307–314.
Allen, D. G., & Kentish, J. C. (1988). Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. The Journal of Physiology, 407(1), 489–503.
Allen, D. G., & Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. The Journal of Physiology, 327(1), 79–94.
ter Keurs, H. E., Wakayama, Y., Sugai, Y., Price, G., Kagaya, Y., Boyden, P. A., et al. (2006). Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle. Annals of the New York Academy of Sciences, 1080(1), 248–267.
Wakayama, Y., Miura, M., Stuyvers, B. D., Boyden, P. A., & ter Keurs, H. E. (2005). Spatial nonuniformity of excitation–contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circulation Research, 96(12), 1266–1273.
Banijamali, H. S., Gao, W. D., MacIntosh, B. R., & ter Keurs, H. E. (1991). Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Effect of ryanodine. Circulation Research, 69(4), 937–948.
Miura, M., Wakayama, Y., Endoh, H., Nakano, M., Sugai, Y., Hirose, M., et al. (2008). Spatial non-uniformity of excitation–contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovascular Research, 80(1), 55–61.
Wakayama, Y., Miura, M., Sugai, Y., Kagaya, Y., Watanabe, J., ter Keurs, H. E., et al. (2001). Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions. American Journal of Physiology. Heart and Circulatory Physiology, 281(5), H2133–H2142.
Miura, M., Nishio, T., Hattori, T., Murai, N., Stuyvers, B. D., Shindoh, C., et al. (2010). Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation, 121(25), 2711–2717.
Jeyaraj, D., Wilson, L. D., Zhong, J., Flask, C., Saffitz, J. E., Deschenes, I., et al. (2007). Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation, 115(25), 3145–3155.
Spragg, D. D., Akar, F. G., Helm, R. H., Tunin, R. S., Tomaselli, G. F., & Kass, D. A. (2005). Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovascular Research, 67(1), 77–86.
Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.
Acknowledgments
I would like to thank Prof. Peter Kohl, Imperial College London, for helpful comments on the manuscript, along with the Department of Physiology and Biophysics at Dalhousie University for supporting my work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Quinn, T.A. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 39, 25–35 (2014). https://doi.org/10.1007/s10840-013-9852-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10840-013-9852-0