Skip to main content

Advertisement

Log in

The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias

  • REVIEWS
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Cardiac mechanical and electrical activities are tightly linked through an intra-cardiac regulatory loop (mechano-electric coupling). This connection is essential for normal heart function and auto-regulation. In diseases associated with altered myocardial mechanical properties or function, however, feedback from the mechanical environment to the origin and spread of excitation can result in deadly cardiac arrhythmias. Ventricular tachyarrhythmias, especially, are encountered in cardiac diseases associated with volume and pressure overload or changes in tissue mechanics. Little is known about the influence of changes in mechano-electric coupling on cardiac rhythm in these settings or the potential therapeutic benefit of its manipulation. Improved understanding may be central to explaining the origin of arrhythmias that occur with these pathologies and to the development of novel mechanics-based therapies. The present review explores the potential role of mechano-electric coupling in ventricular arrhythmogenesis, with a focus on the importance of non-uniformity in mechanical function for the induction and sustenance of ventricular tachyarrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198–205.

    CAS  PubMed  Google Scholar 

  2. Kohl, P., Hunter, P., & Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 71(1), 91–138.

    CAS  PubMed  Google Scholar 

  3. Kohl, P., Sachs, F., & Franz, M. R. (2011). Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press.

    Google Scholar 

  4. Taggart, P., & Sutton, P. M. (1999). Cardiac mechano-electric feedback in man: Clinical relevance. Progress in Biophysics and Molecular Biology, 71(1), 139–154.

    CAS  PubMed  Google Scholar 

  5. Lab, M. J. (1982). Contraction–excitation feedback in myocardium. Physiological basis and clinical relevance. Circulation Research, 50(6), 757–766.

    CAS  PubMed  Google Scholar 

  6. Barsheshet, A., Wang, P. J., Moss, A. J., Solomon, S. D., Al-Ahmad, A., McNitt, S., et al. (2011). Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Journal of the American College of Cardiology, 57(24), 2416–2423.

    PubMed  Google Scholar 

  7. Drakos, S. G., Terrovitis, J. V., Nanas, J. N., Charitos, E. I., Ntalianis, A. S., Malliaras, K. G., et al. (2011). Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. The Annals of Thoracic Surgery, 91(3), 764–769.

    PubMed  Google Scholar 

  8. Waxman, M. B., Wald, R. W., Finley, J. P., Bonet, J. F., Downar, E., & Sharma, A. D. (1980). Valsalva termination of ventricular tachycardia. Circulation, 62(4), 843–851.

    CAS  PubMed  Google Scholar 

  9. Ambrosi, P., Habib, G., Kreitmann, B., Faugere, G., & Metras, D. (1995). Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet, 346(8976), 713.

    CAS  PubMed  Google Scholar 

  10. Wei, J. Y., Greene, H. L., & Weisfeldt, M. L. (1980). Cough-facilitated conversion of ventricular tachycardia. American Journal of Cardiology, 45(1), 174–176.

    CAS  PubMed  Google Scholar 

  11. Lee, Y. C., & Sutton, F. J. (1982). Valsalva termination of ventricular tachycardia. Circulation, 65(6), 1287–1288.

    CAS  PubMed  Google Scholar 

  12. Taggart, P., Sutton, P., John, R., Lab, M., & Swanton, H. (1992). Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. British Heart Journal, 67(3), 221–229.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Franz, M. R. (1996). Mechano-electrical feedback in ventricular myocardium. Cardiovascular Research, 32(1), 15–24.

    CAS  PubMed  Google Scholar 

  14. Franz, M. R., Burkhoff, D., Yue, D. T., & Sagawa, K. (1989). Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovascular Research, 23(3), 213–223.

    CAS  PubMed  Google Scholar 

  15. Franz, M. R., Cima, R., Wang, D., Profitt, D., & Kurz, R. (1992). Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation, 86(3), 968–978.

    CAS  PubMed  Google Scholar 

  16. Hansen, D. E., Craig, C. S., & Hondeghem, L. M. (1990). Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation, 81(3), 1094–1105.

    CAS  PubMed  Google Scholar 

  17. Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., & Hansen, D. E. (1992). Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. The American Journal of Physiology, 263(2 Pt 2), H613–H621.

    PubMed  Google Scholar 

  18. Bode, F., Franz, M., Wilke, I., Bonnemeier, H., Schunkert, H., & Wiegand, U. (2006). Ventricular fibrillation induced by stretch pulse: Implications for sudden death due to Commotio cordis. Journal of Cardiovascular Electrophysiology, 17(9), 1011–1017.

    PubMed  Google Scholar 

  19. Seo, K., Inagaki, M., Nishimura, S., Hidaka, I., Sugimachi, M., Hisada, T., et al. (2010). Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circulation Research, 106(1), 176–184.

    CAS  PubMed  Google Scholar 

  20. Chen, R. L., Penny, D. J., Greve, G., & Lab, M. J. (2004). Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventricle of anesthetized lambs. American Journal of Physiology. Heart and Circulatory Physiology, 286(3), H1008–H1014.

    CAS  PubMed  Google Scholar 

  21. Greve, G., Lab, M. J., Chen, R., Barron, D., White, P. A., Redington, A. N., et al. (2001). Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: Evidence for arrhythmogenic right ventricular mechanoelectrical feedback. Experimental Physiology, 86(5), 651–657.

    CAS  PubMed  Google Scholar 

  22. Reiter, M. J., Synhorst, D. P., & Mann, D. E. (1988). Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circulation Research, 62(3), 554–562.

    CAS  PubMed  Google Scholar 

  23. Rosen, S., Lahorra, M., Cohen, M. V., & Buttrick, P. (1991). Ventricular fibrillation threshold is influenced by left ventricular stretch and mass in the absence of ischaemia. Cardiovascular Research, 25(6), 458–462.

    CAS  PubMed  Google Scholar 

  24. Jalal, S., Williams, G. R., Mann, D. E., & Reiter, M. J. (1992). Effect of acute ventricular dilatation on fibrillation thresholds in the isolated rabbit heart. The American Journal of Physiology, 263(4 Pt 2), H1306–H1310.

    CAS  PubMed  Google Scholar 

  25. Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H., & Kan, J. S. (1988). Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: Evidence for contraction–excitation feedback in humans. Circulation, 77(1), 70–77.

    CAS  PubMed  Google Scholar 

  26. Reiter, M. J., Stromberg, K. D., Whitman, T. A., Adamson, P. B., Benditt, D. G., & Gold, M. R. (2013). Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: Insights from the REDUCEhf trial. Circulation. Arrhythmia and Electrophysiology, 6(2), 272–278.

    PubMed  Google Scholar 

  27. Kusminsky, R. E. (2007). Complications of central venous catheterization. Journal of the American College of Surgeons, 204(4), 681–696.

    PubMed  Google Scholar 

  28. Fiaccadori, E., Gonzi, G., Zambrelli, P., & Tortorella, G. (1996). Cardiac arrhythmias during central venous catheter procedures in acute renal failure: A prospective study. Journal of the American Society of Nephrology, 7(7), 1079–1084.

    CAS  PubMed  Google Scholar 

  29. Bohm, A., Pinter, A., & Preda, I. (2002). Ventricular tachycardia induced by a pacemaker lead. Acta Cardiologica, 57(1), 23–24.

    PubMed  Google Scholar 

  30. Lee, J. C., Epstein, L. M., Huffer, L. L., Stevenson, W. G., Koplan, B. A., & Tedrow, U. B. (2009). ICD lead proarrhythmia cured by lead extraction. Heart Rhythm, 6(5), 613–618.

    PubMed  Google Scholar 

  31. Lindsay, A. C., Wong, T., Segal, O., & Peters, N. S. (2006). An unusual twist: Ventricular tachycardia induced by a loop in a right ventricular pacing wire. Quarterly Journal of Medicine, 99(5), 347–348.

    CAS  Google Scholar 

  32. Berdowski, J., Tijssen, J. G., & Koster, R. W. (2010). Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circulation. Arrhythmia and Electrophysiology, 3(1), 72–78.

    PubMed  Google Scholar 

  33. Cayla, G., Macia, J. C., & Pasquie, J. L. (2007). Images in cardiovascular medicine. Precordial thump in the catheterization laboratory experimental evidence for Commotio cordis. Circulation, 115(11), e332.

    PubMed  Google Scholar 

  34. Zipes, D. P., & Jalife, J. (2009). Cardiac electrophysiology: From cell to bedside. Philadelphia: Saunders.

    Google Scholar 

  35. Janse, M. J., & Wit, A. L. (1989). Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews, 69(4), 1049–1169.

    CAS  PubMed  Google Scholar 

  36. Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovascular Research, 32(1), 3–14.

    CAS  PubMed  Google Scholar 

  37. Reiter, M. J. (1996). Effects of mechano-electrical feedback: Potential arrhythmogenic influence in patients with congestive heart failure. Cardiovascular Research, 32(1), 44–51.

    CAS  PubMed  Google Scholar 

  38. Kohl, P., Bollensdorff, C., & Garny, A. (2006). Effects of mechanosensitive ion channels on ventricular electrophysiology: Experimental and theoretical models. Experimental Physiology, 91(2), 307–321.

    PubMed  Google Scholar 

  39. Kohl, P. (2009). Cardiac stretch-activated channels and mechano-electric transduction. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology: From cell to bedside (pp. 115–126). Philadelphia: Saunders.

    Google Scholar 

  40. Quinn, T. A., & Kohl, P. (2011). Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In P. Kohl, F. Sachs, & M. R. Franz (Eds.), Cardiac mechano-electric coupling and arrhythmias (pp. 160–167). Oxford: Oxford University Press.

    Google Scholar 

  41. Craelius, W., Chen, V., & el-Sherif, N. (1988). Stretch activated ion channels in ventricular myocytes. Bioscience Reports, 8(5), 407–414.

    CAS  PubMed  Google Scholar 

  42. White, E., Boyett, M. R., & Orchard, C. H. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. The Journal of Physiology, 482(Pt 1), 93–107.

    CAS  PubMed  Google Scholar 

  43. Lab, M. J. (1978). Depolarization produced by mechanical changes in normal and abnormal myocardium. The Journal of Physiology, 284(Suppl), 143P–144P.

    CAS  PubMed  Google Scholar 

  44. White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., & Garnier, D. (1993). The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiology, 78(1), 65–78.

    CAS  PubMed  Google Scholar 

  45. Zeng, T., Bett, G. C., & Sachs, F. (2000). Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 278(2), H548–H557.

    CAS  PubMed  Google Scholar 

  46. Kohl, P., Nesbitt, A. D., Cooper, P. J., & Lei, M. (2001). Sudden cardiac death by Commotio cordis: role of mechano-electric feedback. Cardiovascular Research, 50(2), 280–289.

    CAS  PubMed  Google Scholar 

  47. Akar, F. G., Laurita, K. R., & Rosenbaum, D. S. (2000). Cellular basis for dispersion of repolarization underlying reentrant arrhythmias. Journal of Electrocardiology, 33(Suppl), 23–31.

    PubMed  Google Scholar 

  48. Nash, M. P., Bradley, C. P., Sutton, P. M., Clayton, R. H., Kallis, P., Hayward, M. P., et al. (2006). Whole heart action potential duration restitution properties in cardiac patients: A combined clinical and modelling study. Experimental Physiology, 91(2), 339–354.

    PubMed  Google Scholar 

  49. Quinn, T. A., & Kohl, P. (2013). Combining wet and dry research: experience with model development for cardiac mechano-electric structure–function studies. Cardiovascular Research, 97(4), 601–611.

    CAS  PubMed  Google Scholar 

  50. Quinn, T. A., & Kohl, P. (2011). Systems biology of the heart: Hype or hope? Annals of the New York Academy of Sciences, 1245(1), 40–43.

    PubMed  Google Scholar 

  51. Garny, A., & Kohl, P. (2004). Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences, 1015(1), 133–143.

    PubMed  Google Scholar 

  52. Li, W., Kohl, P., & Trayanova, N. (2004). Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D. Journal of Molecular Histology, 35(7), 679–686.

    PubMed  Google Scholar 

  53. Quinn, T. A., Jin, H., & Kohl, P. (2011). Mechanically-induced premature ventricular excitation is mediated by cation non-selective stretch-activated channels and depends on the extent of local tissue deformation in isolated rabbit heart. Circulation, 124(21 Suppl), A13098.

  54. Quinn, T. A., & Kohl, P. (2012). Critical window for mechanically-induced arrhythmias exists in time and in space. Circulation, 126(21 Suppl), A11162.

  55. Calkins, H., Maughan, W. L., Weisman, H. F., Sugiura, S., Sagawa, K., & Levine, J. H. (1989). Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts. Circulation, 79(3), 687–697.

    CAS  PubMed  Google Scholar 

  56. Dean, J. W., & Lab, M. J. (1990). Regional changes in ventricular excitability during load manipulation of the in situ pig heart. The Journal of Physiology, 429(1), 387–400.

    CAS  PubMed  Google Scholar 

  57. Cheung, Y. F. (2012). The role of 3D wall motion tracking in heart failure. Nature Reviews Cardiology, 9(11), 644–657.

    PubMed  Google Scholar 

  58. Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Y. L., et al. (2006). Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1843), 1367–1383.

    CAS  PubMed  Google Scholar 

  59. Markhasin, V. S., Solovyova, O., Katsnelson, L. B., Protsenko, Y., Kohl, P., & Noble, D. (2003). Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Progress in Biophysics and Molecular Biology, 82(1–3), 207–220.

    CAS  PubMed  Google Scholar 

  60. Coronel, R., Wilms-Schopman, F. J., & deGroot, J. R. (2002). Origin of ischemia-induced phase 1b ventricular arrhythmias in pig hearts. Journal of the American College of Cardiology, 39(1), 166–176.

    PubMed  Google Scholar 

  61. Van Leuven, S. L., Waldman, L. K., McCulloch, A. D., & Covell, J. W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. The American Journal of Physiology, 267(6 Pt 2), H2348–H2362.

    PubMed  Google Scholar 

  62. Theroux, P., Franklin, D., Ross, J., Jr., & Kemper, W. S. (1974). Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circulation Research, 35(6), 896–908.

    CAS  PubMed  Google Scholar 

  63. Prinzen, F. W., Arts, T., Hoeks, A. P., & Reneman, R. S. (1989). Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflügers Archiv, 415(2), 220–229.

    CAS  PubMed  Google Scholar 

  64. Gallagher, K. P., Gerren, R. A., Choy, M., Stirling, M. C., & Dysko, R. C. (1987). Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. The American Journal of Physiology, 253(4 Pt 2), H826–H837.

    CAS  PubMed  Google Scholar 

  65. Sakai, K., Watanabe, K., & Millard, R. W. (1985). Defining the mechanical border zone: A study in the pig heart. The American Journal of Physiology, 249(1 Pt 2), H88–H94.

    CAS  PubMed  Google Scholar 

  66. Hirche, H., Hoeher, M., & Risse, J. H. (1987). Inotropic changes in ischaemic and non-ischaemic myocardium and arrhythmias within the first 120 minutes of coronary occlusion in pigs. Basic Research in Cardiology, 82(Suppl 2), 301–310.

    PubMed  Google Scholar 

  67. Barrabes, J. A., Garcia-Dorado, D., Padilla, F., Agullo, L., Trobo, L., Carballo, J., et al. (2002). Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Research in Cardiology, 97(6), 445–451.

    PubMed  Google Scholar 

  68. Parker, K. K., Lavelle, J. A., Taylor, L. K., Wang, Z., & Hansen, D. E. (2004). Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. Journal of Applied Physiology, 97(1), 377–383.

    PubMed  Google Scholar 

  69. Califf, R. M., Burks, J. M., Behar, V. S., Margolis, J. R., & Wagner, G. S. (1978). Relationships among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation, 57(4), 725–732.

    CAS  PubMed  Google Scholar 

  70. Siogas, K., Pappas, S., Graekas, G., Goudevenos, J., Liapi, G., & Sideris, D. A. (1998). Segmental wall motion abnormalities alter vulnerability to ventricular ectopic beats associated with acute increases in aortic pressure in patients with underlying coronary artery disease. Heart, 79(3), 268–273.

    CAS  PubMed  Google Scholar 

  71. Horner, S. M., Lab, M. J., Murphy, C. F., Dick, D. J., Zhou, B., & Harrison, F. G. (1994). Mechanically induced changes in action potential duration and left ventricular segment length in acute regional ischaemia in the in situ porcine heart. Cardiovascular Research, 28(4), 528–534.

    Google Scholar 

  72. Van Wagoner, D. R. (1993). Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circulation Research, 72(5), 973–983.

    PubMed  Google Scholar 

  73. Tseng, G. N. (1992). Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. The American Journal of Physiology, 262(4 Pt 1), C1056–C1068.

    CAS  PubMed  Google Scholar 

  74. Horner, S. M., Murphy, C. F., Coen, B., Dick, D. J., & Lab, M. J. (1996). Sympathomimetic modulation of load-dependent changes in the action potential duration in the in situ porcine heart. Cardiovascular Research, 32(1), 148–157.

    Google Scholar 

  75. Lu, F., Jun-Xian, C., Rong-Sheng, X., Jia, L., Ying, H., Li-Qun, Z., et al. (2007). The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace, 9(8), 578–584.

    Google Scholar 

  76. Durrer, J. D., Lie, K. I., van Capelle, F. J., & Durrer, D. (1982). Effect of sodium nitroprusside on mortality in acute myocardial infarction. The New England Journal of Medicine, 306(19), 1121–1128.

    CAS  PubMed  Google Scholar 

  77. Mukherjee, D., Feldman, M. S., & Helfant, R. H. (1976). Nitroprusside therapy. Treatment of hypertensive patients with recurrent resting chest pain, ST-segment elevation, and ventricular arrhythmias. Journal of the American Medical Association, 235(22), 2406–2409.

    CAS  PubMed  Google Scholar 

  78. Opthof, T., Sutton, P., Coronel, R., Wright, S., Kallis, P., & Taggart, P. (2012). The association of abnormal ventricular wall motion and increased dispersion of repolarization in humans is independent of the presence of myocardial infarction. Frontiers in Physiology, 3(Jul 3), Article 235.

    Google Scholar 

  79. Kohl, P., & Camelliti, P. (2012). Fibroblast–myocyte connections in the heart. Heart Rhythm, 9(3), 461–464.

    PubMed  Google Scholar 

  80. de Bakker, J. M., & van Rijen, H. M. (2006). Continuous and discontinuous propagation in heart muscle. Journal of Cardiovascular Electrophysiology, 17(5), 567–573.

    PubMed  Google Scholar 

  81. Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810.

    CAS  PubMed  Google Scholar 

  82. Kizana, E., Ginn, S. L., Smyth, C. M., Boyd, A., Thomas, S. P., Allen, D. G., et al. (2006). Fibroblasts modulate cardiomyocyte excitability: implications for cardiac gene therapy. Gene Therapy, 13(22), 1611–1615.

    CAS  PubMed  Google Scholar 

  83. Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428.

    CAS  PubMed  Google Scholar 

  84. Goshima, K., & Tonomura, Y. (1969). Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Experimental Cell Research, 56(2), 387–392.

    CAS  PubMed  Google Scholar 

  85. Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. (2010). Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Walker, N. L., Burton, F. L., Kettlewell, S., Smith, G. L., & Cobbe, S. M. (2007). Mapping of epicardial activation in a rabbit model of chronic myocardial infarction. Journal of Cardiovascular Electrophysiology, 18(8), 862–868.

    PubMed  Google Scholar 

  87. Saba, S., Mathier, M. A., Mehdi, H., Liu, T., Choi, B. R., London, B., et al. (2008). Dual-dye optical mapping after myocardial infarction: Does the site of ventricular stimulation alter the properties of electrical propagation? Journal of Cardiovascular Electrophysiology, 19(2), 197–202.

    PubMed  Google Scholar 

  88. Stockbridge, L. L., & French, A. S. (1988). Stretch-activated cation channels in human fibroblasts. Biophysical Journal, 54(1), 187–190.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kohl, P., & Noble, D. (1996). Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovascular Research, 32(1), 62–68.

    CAS  PubMed  Google Scholar 

  90. Thompson, S. A., Copeland, C. R., Reich, D. H., & Tung, L. (2011). Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 123(19), 2083–2093.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Roden, D. M. (2008). Clinical practice. Long-QT syndrome. The New England Journal of Medicine, 358(2), 169–176.

    CAS  PubMed  Google Scholar 

  92. Odening, K. E., Jung, B. A., Lang, C. N., Cabrera Lozoya, R., Ziupa, D., Menza, M., et al. (2013). Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits. Heart Rhythm, 10(10), 1533–1541.

    PubMed  Google Scholar 

  93. Kohl, P. (2013). From ion channel to organismic phenotype: An example of integrative translational research into cardiac electromechanics. Heart Rhythm, 10(10), 1542–1543.

    PubMed  Google Scholar 

  94. Ashikaga, H., van der Spoel, T. I., Coppola, B. A., & Omens, J. H. (2009). Transmural myocardial mechanics during isovolumic contraction. Journal of the American College of Cardiology Cardiovascular Imaging, 2(2), 202–211.

    PubMed Central  PubMed  Google Scholar 

  95. Gallacher, D. J., Van de Water, A., van der Linde, H., Hermans, A. N., Lu, H. R., Towart, R., et al. (2007). In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovascular Research, 76(2), 247–256.

    CAS  PubMed  Google Scholar 

  96. Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., et al. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16(10), 1087–1096.

    PubMed  Google Scholar 

  97. Trapero, I., Chorro, F. J., Such-Miquel, L., Canoves, J., Tormos, A., Pelechano, F., et al. (2008). Efectos de la estreptomicina en las modificaciones de la activacion miocardica durante la fibrilacion ventricular inducidas por el estiramiento [Effect of streptomycin on stretch-induced change in myocardial activation during ventricular fibrillation]. Revista Española de Cardiología, 61(2), 201–205.

    PubMed  Google Scholar 

  98. Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Canoves, J., et al. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1860–H1869.

    CAS  PubMed  Google Scholar 

  99. Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., et al. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206(1), 29–41.

    CAS  PubMed  Google Scholar 

  100. Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., et al. (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. The Journal of General Physiology, 115(5), 583–598.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Bode, F., Sachs, F., & Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature, 409(6816), 35–36.

    CAS  PubMed  Google Scholar 

  102. Trayanova, N. A. (2011). Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics. Circulation Research, 108(1), 113–128.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Trayanova, N. A., Constantino, J., & Gurev, V. (2010). Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology, 43(6), 479–485.

    PubMed Central  PubMed  Google Scholar 

  104. Jie, X., Gurev, V., & Trayanova, N. (2010). Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circulation Research, 106(1), 185–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299(1), H134–H143.

    CAS  PubMed  Google Scholar 

  106. Hu, Y., Gurev, V., Constantino, J., Bayer, J. D., & Trayanova, N. A. (2013). Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PloS One, 8(4), e60287.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Calaghan, S. C., & White, E. (1999). The role of calcium in the response of cardiac muscle to stretch. Progress in Biophysics and Molecular Biology, 71(1), 59–90.

    CAS  PubMed  Google Scholar 

  108. ter Keurs, H. E. (2012). The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H38–H50.

    PubMed  Google Scholar 

  109. ter Keurs, H. E., & Boyden, P. A. (2007). Calcium and arrhythmogenesis. Physiological Reviews, 87(2), 457–506.

    PubMed  Google Scholar 

  110. Allen, D. G., & Kentish, J. C. (1985). The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 17(9), 821–840.

    CAS  PubMed  Google Scholar 

  111. Iribe, G., Ward, C. W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R. A., et al. (2009). Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circulation Research, 104(6), 787–795.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: rapid mechano-chemo transduction in heart. Science, 333(6048), 1440–1445.

    CAS  PubMed  Google Scholar 

  113. Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307–314.

    CAS  PubMed  Google Scholar 

  114. Allen, D. G., & Kentish, J. C. (1988). Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. The Journal of Physiology, 407(1), 489–503.

    CAS  PubMed  Google Scholar 

  115. Allen, D. G., & Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. The Journal of Physiology, 327(1), 79–94.

    CAS  PubMed  Google Scholar 

  116. ter Keurs, H. E., Wakayama, Y., Sugai, Y., Price, G., Kagaya, Y., Boyden, P. A., et al. (2006). Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle. Annals of the New York Academy of Sciences, 1080(1), 248–267.

    PubMed  Google Scholar 

  117. Wakayama, Y., Miura, M., Stuyvers, B. D., Boyden, P. A., & ter Keurs, H. E. (2005). Spatial nonuniformity of excitation–contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circulation Research, 96(12), 1266–1273.

    CAS  PubMed  Google Scholar 

  118. Banijamali, H. S., Gao, W. D., MacIntosh, B. R., & ter Keurs, H. E. (1991). Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Effect of ryanodine. Circulation Research, 69(4), 937–948.

    CAS  PubMed  Google Scholar 

  119. Miura, M., Wakayama, Y., Endoh, H., Nakano, M., Sugai, Y., Hirose, M., et al. (2008). Spatial non-uniformity of excitation–contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovascular Research, 80(1), 55–61.

    CAS  PubMed  Google Scholar 

  120. Wakayama, Y., Miura, M., Sugai, Y., Kagaya, Y., Watanabe, J., ter Keurs, H. E., et al. (2001). Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions. American Journal of Physiology. Heart and Circulatory Physiology, 281(5), H2133–H2142.

    CAS  PubMed  Google Scholar 

  121. Miura, M., Nishio, T., Hattori, T., Murai, N., Stuyvers, B. D., Shindoh, C., et al. (2010). Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation, 121(25), 2711–2717.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Jeyaraj, D., Wilson, L. D., Zhong, J., Flask, C., Saffitz, J. E., Deschenes, I., et al. (2007). Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation, 115(25), 3145–3155.

    PubMed  Google Scholar 

  123. Spragg, D. D., Akar, F. G., Helm, R. H., Tunin, R. S., Tomaselli, G. F., & Kass, D. A. (2005). Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovascular Research, 67(1), 77–86.

    CAS  PubMed  Google Scholar 

  124. Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.

    PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Peter Kohl, Imperial College London, for helpful comments on the manuscript, along with the Department of Physiology and Biophysics at Dalhousie University for supporting my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Alexander Quinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, T.A. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 39, 25–35 (2014). https://doi.org/10.1007/s10840-013-9852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9852-0

Keywords

Navigation