Skip to main content

Advertisement

Log in

Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention?

  • REVIEWS
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is a hallmark of common cardiovascular disorders, including ischemia–reperfusion injury, hypertrophy, heart failure, and diabetes mellitus. While the role of the mitochondrial network in regulating energy production and cell death pathways is well established, its active control of other critical cellular functions, including excitation–contraction coupling and excitability, is less understood. The purpose of this focused review article is to highlight the growing mechanistic link between mitochondrial dysfunction and arrhythmogenesis. The goal is not to provide a comprehensive listing of all factors by which mitochondrial bioenergetics and altered cellular redox status affect ion channel function but rather to focus on one central mechanism of arrhythmogenesis which arises from a mitochondrial origin. In doing so, we discuss the role of mitochondrial targets for suppressing arrhythmias through this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

I/R:

Ischemia–reperfusion injury

LVH:

Left ventricular hypertrophy

HF:

Heart failure

MI:

Myocardial infarction

AP:

Action potential

APD:

Action potential duration

ETC:

Electron transport chain

ATP:

Adenine triphosphate

DYm:

Mitochondrial membrane potential

ROS:

Reactive oxygen species

H2O2 :

Hydrogen peroxide

O2 :

Superoxide anion

RIRR:

ROS-induced ROS release

OS:

Oxidative stress

sarcKATP :

Sarcolemmal ATP-sensitive potassium channels

mPTP:

Mitochondrial permeability transition pore

CsA:

Cyclosporine-A

IMAC:

Inner membrane anion channel

4′-Cl-DZP:

4′-Chlorodiazepam (IMAC blocker)

mBzR:

Mitochondrial benzodiazepine receptor

References

  1. O'Rourke, B. (2007). Mitochondrial ion channels. Annual Review of Physiology, 69, 19–49.

    Article  PubMed  Google Scholar 

  2. Liu, M., Liu, H., & Dudley, S. C., Jr. (2010). Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circulation Research, 107(8), 967–974.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, J., Wang, H., Zhang, Y., Gao, H., Nattel, S., & Wang, Z. (2004). Impairment of HERG K(+) channel function by tumor necrosis factor-alpha: role of reactive oxygen species as a mediator. The Journal of Biological Chemistry, 279(14), 13289–13292.

    Article  PubMed  CAS  Google Scholar 

  4. Weiss, J. N., Lamp, S. T., & Shine, K. I. (1989). Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition. The American Journal of Physiology, 256(4 Pt 2), H1165–H1175.

    PubMed  CAS  Google Scholar 

  5. Terentyev, D., Gyorke, I., Belevych, A. E., Terentyeva, R., Sridhar, A., Nishijima, Y., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circulation Research, 103(12), 1466–1472.

    Article  PubMed  CAS  Google Scholar 

  6. Smyth, J. W., Hong, T. T., Gao, D., Vogan, J. M., Jensen, B. C., Fong, T. S., et al. (2010). Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. The Journal of Clinical Investigation, 120(1), 266–279.

    Article  PubMed  CAS  Google Scholar 

  7. Belevych, A. E., Terentyev, D., Viatchenko-Karpinski, S., Terentyeva, R., Sridhar, A., Nishijima, Y., et al. (2009). Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 84(3), 387–395.

    Article  PubMed  CAS  Google Scholar 

  8. Aggarwal, N. T., & Makielski, J. C. (2013). Redox control of cardiac excitability. Antioxidants & Redox Signaling, 18(4), 432–468.

    Article  CAS  Google Scholar 

  9. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., & Sollott, S. J. (2000). Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. The Journal of Experimental Medicine, 192(7), 1001–1014.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, L., Korge, P., Weiss, J. N., & Qu, Z. (2010). Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models. Biophysical Journal, 98(8), 1428–1438.

    Article  PubMed  CAS  Google Scholar 

  11. Aon, M. A., Cortassa, S., Marban, E., & O'Rourke, B. (2003). Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. The Journal of Biological Chemistry, 278(45), 44735–44744.

    Article  PubMed  CAS  Google Scholar 

  12. Aon, M. A., Cortassa, S., Akar, F. G., Brown, D. A., Zhou, L., & O'Rourke, B. (2009). From mitochondrial dynamics to arrhythmias. The International Journal of Biochemistry & Cell Biology, 41(10), 1940–1948.

    Article  CAS  Google Scholar 

  13. Aon, M. A., Cortassa, S., Akar, F. G., & O'Rourke, B. (2006). Mitochondrial criticality: a new concept at the turning point of life or death. Biochimica et Biophysica Acta, 1762(2), 232–240.

    Article  PubMed  CAS  Google Scholar 

  14. O'Rourke, B., Ramza, B. M., & Marban, E. (1994). Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science, 265(5174), 962–966.

    Article  PubMed  Google Scholar 

  15. Akar, F. G., Aon, M. A., Tomaselli, G. F., & O'Rourke, B. (2005). The mitochondrial origin of postischemic arrhythmias. The Journal of Clinical Investigation, 115(12), 3527–3535.

    Article  PubMed  CAS  Google Scholar 

  16. Akar, F. G., & O'Rourke, B. (2011). Mitochondria are sources of metabolic sink and arrhythmias. Pharmacology and Therapeutics, 131(3), 287–294.

    Article  PubMed  CAS  Google Scholar 

  17. del Valle, H. F., Lascano, E. C., Negroni, J. A., & Crottogini, A. J. (2001). Glibenclamide effects on reperfusion-induced malignant arrhythmias and left ventricular mechanical recovery from stunning in conscious sheep. Cardiovascular Research, 50(3), 474–485.

    Article  PubMed  Google Scholar 

  18. Csordas, G., Varnai, P., Golenar, T., Sheu, S. S., & Hajnoczky, G. (2012). Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Molecular and Cellular Endocrinology, 353(1–2), 109–113.

    Article  PubMed  CAS  Google Scholar 

  19. Beutner, G., Sharma, V. K., Lin, L., Ryu, S. Y., Dirksen, R. T., & Sheu, S. S. (2005). Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochimica et Biophysica Acta, 1717(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  20. Laskowski, K. R., & Russell, R. R., 3rd. (2008). Uncoupling proteins in heart failure. Current Heart Failure Reports, 5(2), 75–79.

    Article  PubMed  CAS  Google Scholar 

  21. Brady, N. R., Hamacher-Brady, A., Westerhoff, H. V., & Gottlieb, R. A. (2006). A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxidants & Redox Signaling, 8(9–10), 1651–1665.

    Article  CAS  Google Scholar 

  22. Peixoto, P. M., Ryu, S. Y., & Kinnally, K. W. (2010). Mitochondrial ion channels as therapeutic targets. FEBS Letters, 584(10), 2142–2152.

    Article  PubMed  CAS  Google Scholar 

  23. Piot, C., Croisille, P., Staat, P., Thibault, H., Rioufol, G., Mewton, N., et al. (2008). Effect of cyclosporine on reperfusion injury in acute myocardial infarction. The New England Journal of Medicine, 359(5), 473–481.

    Article  PubMed  CAS  Google Scholar 

  24. Dow, J., Bhandari, A., & Kloner, R. A. (2009). The mechanism by which ischemic postconditioning reduces reperfusion arrhythmias in rats remains elusive. Journal of Cardiovascular Pharmacology and Therapeutics, 14(2), 99–103.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, D. A., Aon, M. A., Akar, F. G., Liu, T., Sorarrain, N., & O'Rourke, B. (2008). Effects of 4′-chlorodiazepam on cellular excitation-contraction coupling and ischaemia-reperfusion injury in rabbit heart. Cardiovascular Research, 79(1), 141–149.

    Article  PubMed  CAS  Google Scholar 

  26. Halestrap, A. P. (2010). A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochemical Society Transactions, 38(4), 841–860.

    Article  PubMed  CAS  Google Scholar 

  27. Garlid, K. D., Beavis, A. D., & Ratkje, S. K. (1989). On the nature of ion leaks in energy-transducing membranes. Biochimica et Biophysica Acta, 976(2–3), 109–120.

    Article  PubMed  CAS  Google Scholar 

  28. Lyon, A. R., Joudrey, P. J., Jin, D., Nass, R. D., Aon, M. A., O'Rourke, B., et al. (2010). Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart. Journal of Molecular and Cellular Cardiology, 49, 565–575.

    Article  PubMed  CAS  Google Scholar 

  29. Slodzinski, M. K., Aon, M. A., & O'Rourke, B. (2008). Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. Journal of Molecular and Cellular Cardiology, 45(5), 650–660.

    Article  PubMed  CAS  Google Scholar 

  30. Matsumoto-Ida, M., Akao, M., Takeda, T., Kato, M., & Kita, T. (2006). Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation, 114(14), 1497–1503.

    Article  PubMed  CAS  Google Scholar 

  31. Biary, N., Xie, C., Kauffman, J., & Akar, F. G. (2011). Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium. The Journal of Physiology, 589(Pt 21), 5167–5179.

    PubMed  CAS  Google Scholar 

  32. Webster, K. A. (2007). Programmed death as a therapeutic target to reduce myocardial infarction. Trends in Pharmacological Sciences, 28(9), 492–499.

    Article  PubMed  CAS  Google Scholar 

  33. Halestrap, A. P. (2006). Calcium, mitochondria and reperfusion injury: a pore way to die. Biochemical Society Transactions, 34(Pt 2), 232–237.

    PubMed  CAS  Google Scholar 

  34. Leong, H. S., Brownsey, R. W., Kulpa, J. E., & Allard, M. F. (2003). Glycolysis and pyruvate oxidation in cardiac hypertrophy—why so unbalanced? Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology, 135(4), 499–513.

    Article  CAS  Google Scholar 

  35. Jin, H., Nass, R. D., Joudrey, P. J., Lyon, A. R., Chemaly, E. R., Rapti, K., et al. (2010). Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart. Biophysical Journal, 98(10), 2063–2071.

    Article  PubMed  CAS  Google Scholar 

  36. Nagendran, J., Gurtu, V., Fu, D. Z., Dyck, J. R., Haromy, A., Ross, D. B., et al. (2008). A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. The Journal of Thoracic and Cardiovascular Surgery, 136(1), 168–178. 78 e1–3.

    Article  PubMed  Google Scholar 

  37. Sharma, A. K., Dhingra, S., Khaper, N., & Singal, P. K. (2007). Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs. American Journal of Physiology, 293(3), H1384–H1390.

    PubMed  CAS  Google Scholar 

  38. Matas, J., Young, N. T., Bourcier-Lucas, C., Ascah, A., Marcil, M., Deschepper, C. F., et al. (2009). Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 46(3), 420–430.

    Article  PubMed  CAS  Google Scholar 

  39. Garciarena, C. D., Caldiz, C. I., Portiansky, E. L., de Cingolani GE, C., & Ennis, I. L. (2009). Chronic NHE-1 blockade induces an antiapoptotic effect in the hypertrophied heart. Journal of Applied Physiology, 106(4), 1325–1331.

    Article  PubMed  CAS  Google Scholar 

  40. Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(Pt 2), 335–344.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, F., De Diego, C., Xie, L. H., Yang, J. H., Klitzner, T. S., & Weiss, J. N. (2007). Effects of metabolic inhibition on conduction, Ca transients, and arrhythmia vulnerability in embryonic mouse hearts. American Journal of Physiology, 293(4), H2472–H2478.

    PubMed  CAS  Google Scholar 

  42. Michels, G., Khan, I. F., Endres-Becker, J., Rottlaender, D., Herzig, S., Ruhparwar, A., et al. (2009). Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation, 119(18), 2435–2443.

    Article  PubMed  CAS  Google Scholar 

  43. Ozcan C, Palmeri M, Horvath TL, Russell KS, Russell RR. (2013). Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias and preconditioning. American Journal of Physiology, 304(9), H1192–1200.

    Google Scholar 

  44. Brennan, J. P., Southworth, R., Medina, R. A., Davidson, S. M., Duchen, M. R., & Shattock, M. J. (2006). Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovascular Research, 72(2), 313–321.

    Article  PubMed  CAS  Google Scholar 

  45. Hatcher, A. S., Alderson, J. M., & Clements-Jewery, H. (2011). Mitochondrial uncoupling agents trigger ventricular fibrillation in isolated rat hearts. Journal of Cardiovascular Pharmacology, 57(4), 439–446.

    Article  PubMed  CAS  Google Scholar 

  46. Smith, R. M., Velamakanni, S. S., & Tolkacheva, E. G. (2012). Interventricular heterogeneity as a substrate for arrhythmogenesis of decoupled mitochondria during ischemia in the whole heart. American Journal of Physiology, 303(2), H224–H233.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Akar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akar, F.G. Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention?. J Interv Card Electrophysiol 37, 249–258 (2013). https://doi.org/10.1007/s10840-013-9809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9809-3

Keywords

Navigation