Skip to main content
Log in

The effect of NavX on fluoroscopy times in pediatric catheter ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Catheter ablation is the established curative therapy for pediatric tachyarrhythmias. However, exposure to ionizing radiation from fluoroscopy during the procedure is of concern to both patients and caregivers. We sought to assess the impact of an impedance-based three-dimensional navigation system (NavXTM, Endocardial Solutions, Inc., St. Paul, MN) on pediatric catheter ablation procedures.

Methods

We retrospectively analyzed procedural data during a 7-year period (2002–2008), which spanned the transition between standard fluoroscopic mapping and adoption of NavXTM mapping for catheter ablation of atrioventricular nodal reentrant tachycardia (AVNRT) and right/left-sided accessory pathways (RAP/LAP). Comparisons of total procedure time, total fluoroscopy time, and ablation fluoroscopy time (from insertion of ablation catheter until completion of procedure) between NavXTM and conventional mapping were made.

Results

Three hundred eighty-eight patients (aged 1–18 years, M/F 236:183) underwent ablation of AVNRT (n = 101), LAP (n = 130), or RAP (n = 157) using either conventional (n = 70) or NavXTM (n = 318) mapping. Overall success rates were similar between the two mapping approaches (95.7% for conventional versus 95.9% for NavXTM). NavXTM mapping significantly reduced ablation fluoroscopy time (15.9 ± 14.3 versus 11.0 ± 8.9 min for NavXTM, p < 0.01) with a trend towards a decrease in total fluoroscopy time (26.4 ± 15.6 versus 23.8 ± 11.1 min for NavXTM, p = 0.095). Total procedure time was not significantly different between the two methods (210.1 ± 66 versus 222.8 ± 61 min for NavXTM, p = 0.13). When analyzed by arrhythmia substrate, there were significant reductions in ablation fluoroscopy time for both LAP and RAP.

Conclusions

NavXTM mapping reduced ablation fluoroscopy times for accessory pathways during pediatric catheter ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Van Hare, G. F., Javitz, H., Carmelli, D., Saul, J. P., Tanel, R. E., Fischbach, P. S., et al. (2004). Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. Journal of Cardiovascular Electrophysiology, 15(7), 759–770.

    Article  PubMed  Google Scholar 

  2. Lickfett, L., Mahesh, M., Vasamreddy, C., Bradley, D., Jayam, V., Eldadh, Z., et al. (2004). Radiation exposure during catheter ablation of atrial fibrillation. Circulation, 110(19), 3003–3010.

    Article  PubMed  Google Scholar 

  3. Rosenthal, L. S., Beck, T. J., Williams, J., Mahesh, M., Herman, M. G., Dinerman, J. L., et al. (1997). Acute radiation dermatitis following radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing and Clinical Electrophysiology, 20(7), 1834–1839.

    Article  PubMed  CAS  Google Scholar 

  4. Nahass, G. T. (1995). Fluoroscopy and the skin: implications for radiofrequency catheter ablation. The American Journal of Cardiology, 76(3), 174–176.

    Article  PubMed  CAS  Google Scholar 

  5. Mahesh, M. (2001). Fluoroscopy: patient radiation exposure issues. Radiographics, 21(4), 1033–1045.

    PubMed  CAS  Google Scholar 

  6. Calkins, H., Niklason, L., Sousa, J., el-Atassi, R., Langberg, J., & Morady, F. (1991). Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation, 84(6), 2376–2389.

    PubMed  CAS  Google Scholar 

  7. Lindsay, B. D., Eichling, J. O., Ambos, H. D., & Cain, M. E. (1992). Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. The American Journal of Cardiology, 70(2), 218–233.

    Article  PubMed  CAS  Google Scholar 

  8. Kovoor, P., Ricciardello, M., Collins, L., Uther, J. B., & Ross, D. L. (1998). Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. The American Journal of Cardiology, 98(15), 1534–1540.

    CAS  Google Scholar 

  9. Novak, P. G., Guerra, P. G., Thibault, B., & Macle, L. (2004). Utility of a nonfluoroscopic navigation system for pulmonary vein isolation. Journal of Cardiovascular Electrophysiology, 15(8), 967.

    Article  PubMed  Google Scholar 

  10. Van Hare, G. F., & McDaniel, G. M. (2006). Catheter ablation in children and adolescents. Heart Rhythm, 3(1), 95–101.

    Article  PubMed  Google Scholar 

  11. Schneider, M. A. E., Ndrepepa, G., Zrenner, B., Karch, M. R., Schmieder, S., Deisenhofer, I., et al. (2001). Noncontact mapping guided ablation of atrial flutter and enhanced-density mapping of the inferior vena cava-tricuspid annulus isthmus. Pacing and Clinical Electrophysiology, 24(12), 1755–1764.

    Article  PubMed  CAS  Google Scholar 

  12. Kottkamp, H., Hugl, B., Krauss, B., Wetzel, U., Fleck, A., Schuler, G., et al. (2000). Electromagnetic versus fluoroscopic mapping of the inferior isthmus for ablation of typical atrial flutter. A prospective randomized study. Circulation, 102(17), 2082–2086.

    PubMed  CAS  Google Scholar 

  13. Willems, S., Weiss, C., Ventura, R., Ruppel, R., Risius, T., Hoffmann, M., et al. (2000). Catheterablation of atrial flutter guided by electroanatomic mapping (CARTO): a randomized comparison to the conventional approach. Journal of Cardiovascular Electrophysiology, 11(11), 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  14. Nakagawa, H., & Jackman, W. M. (1998). Use of a three-dimensional, nonfluoroscopic mapping system for catheter ablation of typical atrial flutter. Pacing and Clinical Electrophysiology, 21(6), 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  15. Schneider, M. A. E., Ndrepepa, G., Dobran, I., Schreieck, J., Weber, S., Plewan, A., et al. (2003). LocaLisa catheter navigation reduced fluoroscopy time and dosage in ablation of atrial flutter: a prospective randomized study. The Journal of Cardiovascular Electrophysiology, 14(6), 587–590.

    Article  Google Scholar 

  16. Wittkampf, F. H., Wever, E. F., Vos, K., Geleijns, J., Schalij, M. J., Tol, J., et al. (2000). Reduction of radiation exposure in the cardiac electrophysiology laboratory. Pacing and Clinical Electrophysiology, 23(11), 1638–1644.

    Article  PubMed  CAS  Google Scholar 

  17. Kirchhof, P., Loh, P., Eckardt, L., Ribbing, M., Rolf, S., Eick, O., et al. (2002). A novel nonfluoroscopic catheter visualization system (LocaLisa) to reduce radiation exposure during catheter ablation of supraventricular tachycardias. The American Journal of Cardiology, 90(3), 340–343.

    Article  PubMed  Google Scholar 

  18. Danford, D. A., Kugler, J. D., Deal, B., Case, C., Friedman, R. A., Saul, J. P., et al. (1995). The learning curve for radiofrequency ablation of tachyarrhythmias in pediatric patients. The American Journal of Cardiology, 75(8), 587–590.

    Article  PubMed  CAS  Google Scholar 

  19. Papagiannis, J., Tsoutsinos, A., Kirvassilis, G., Sofianidou, I., Koussi, T., Laskari, C., et al. (2006). Nonfluoroscopic catheter navigation for radiofrequency catheter ablation of supraventricular tachycardia in children. Pacing and Clinical Electrophysiology, 29(9), 971–978.

    Article  PubMed  Google Scholar 

  20. Tuzcu, V. (2007). A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing and Clinical Electrophysiology, 30(4), 519–525.

    Article  PubMed  Google Scholar 

  21. Smith, G., & Clark, J. M. (2007). Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing and Clinical Electrophysiology, 30(4), 510–518.

    Article  PubMed  Google Scholar 

  22. Clark, J., Bockoven, J. R., Lane, J., Patel, C. R., & Smith, G. (2008). Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing and Clinical Electrophysiology, 31(3), 283–289.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Kirsh.

Additional information

Andrea Neilson was at the Labatt Family Heart Centre during the initial data collection and analysis for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, W., Neilson, A.L., Chiu, C.C. et al. The effect of NavX on fluoroscopy times in pediatric catheter ablation. J Interv Card Electrophysiol 33, 123–126 (2012). https://doi.org/10.1007/s10840-011-9604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-011-9604-y

Keywords

Navigation