Skip to main content

Use of a novel transfer function to reduce repolarization interval hysteresis

Abstract

Background

Cardiac repolarization is assessed by the QT interval on the surface electrocardiogram and varies with the heart rate. Standard QT corrections (QTc) do not account for the lag in QT change following a change in heart rate (QT hysteresis). Our group has developed and tested a transfer function (TRF) model to assess the effectiveness of a dynamic model of QT/RR coupling in eliminating hysteresis.

Methods

We studied three groups: group I, healthy volunteers (n = 23, 41 ± 17 years); group II, hypertensive patients (n = 25, 45 ± 11 years); and group III, patients in a predominately paced rhythm (n = 5, 75 ± 6 years). To vary the heart rate, either exercise bicycling in the supine position (groups I and II) or manipulation of the pacemaker parameters (group III) was done. We then compared a dynamic TRF model with a model based on weighted averages of previous RR intervals. Two parameters were tested: root mean square (RMS) of the error signal between measured and computed QT and the elimination of hysteretic loops.

Results

TRF-based measurements eliminated hysteresis in 22/23 (95%) group I patients, 21/25 (84%) group II patients, and 4/5 (80%) group III patients. When hysteresis elimination was not complete, the QT drift that followed RR intervals was different before and after bicycling (100 ms). In these patients, the corresponding QT interval did not significantly change during this period. The TRF model was found superior to the other tested models with respect to both analyzed parameters (RMS and hysteresis elimination).

Conclusion

The TRF model limited QT hysteresis in healthy, hypertensive, and pacemaker-dependent patients. In addition, an important finding of QT drift in patients with hypertension was identified. With further study in these and other diseased states, the TRF model may improve our ability to measure accurately cardiac repolarization and to determine arrhythmia risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

TRF:

Transfer function

ECG:

Electrocardiogram

RMS:

Root mean square

Ms:

Milliseconds

RR:

Heart interval

QTc:

QT corrected

References

  1. Berger, R. D. (2004). Electrical restitution hysteresis: good memory or delayed response? Circulation Research, 94, 567–569.

    CAS  Article  PubMed  Google Scholar 

  2. Chauhan, V. S., Krahn, A. D., Walker, B. D., Klein, G. J., Skanes, A. C., & Yee, R. (2002). Sex differences in QTc interval and QT dispersion: dynamics during exercise and recovery in healthy subjects. American Heart Journal, 144, 858–864.

    PubMed  Google Scholar 

  3. Couderc, J. P., Vaglio, M., Xia, X., et al. (2007). Impaired T-amplitude adaptation to heart rate characterizes I(Kr) inhibition in the congenital and acquired forms of the long QT syndrome. Journal of Cardiovascular Electrophysiology, 18, 1299–1305.

    Article  PubMed  Google Scholar 

  4. Extramiana, F., Maison-Blanche, P., Haggui, A., Badilini, F., Beaufils, P., & Leenhardt, A. (2006). Control of rapid heart rate changes for electrocardiographic analysis: implications for thorough QT studies. Clinical Cardiology, 29, 534–539.

    Article  PubMed  Google Scholar 

  5. Fossa, A. A., Wisialowski, T., & Crimin, K. (2006). QT prolongation modifies dynamic restitution and hysteresis of the beat-to-beat QT-TQ interval relationship during normal sinus rhythm under varying states of repolarization. The Journal of Pharmacology and Experimental Therapeutics, 316, 498–506.

    CAS  Article  PubMed  Google Scholar 

  6. Lauer, M. S., Pothier, C. E., Chernyak, Y. B., et al. (2006). Exercise-induced QT/R-R-interval hysteresis as a predictor of myocardial ischemia. Journal of Electrocardiology, 39, 315–323.

    Article  PubMed  Google Scholar 

  7. Watanabe, M. A. (2007). Lissajous curves and QT hysteresis: a critical look at QT/RR slope analysis techniques. Heart Rhythm, 4, 1006–1008.

    Article  PubMed  Google Scholar 

  8. Fenichel, R. R., Malik, M., Antzelevitch, C., et al. (2004). Drug-induced torsades de pointes and implications for drug development. Journal of Cardiovascular Electrophysiology, 15, 475–495.

    Article  PubMed  Google Scholar 

  9. Schwartz, P. J., Priori, S. G., Spazzolini, C., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103, 89–95.

    CAS  PubMed  Google Scholar 

  10. Kapa, S., & Asirvatham, S. J. (2009). Atrial fibrillation: focal or reentrant or both?: A new autonomic lens to examine an old riddle. Circulation Arrhythmia and Electrophysiology, 2, 345–348.

    Article  PubMed  Google Scholar 

  11. Halamek, J., Jurak, P., Villa, M., et al. (2007). Dynamic coupling between heart rate and ventricular repolarisation. Biomedical Technology (Berlin), 52, 255–263.

    Article  Google Scholar 

  12. Malik, M., Hnatkova, K., Novotny, T., & Schmidt, G. (2008). Subject-specific profiles of QT/RR hysteresis. The American Journal of Physiology, 295, H2356–H2363.

    CAS  Google Scholar 

  13. Pueyo, E., Smetana, P., Caminal, P., de Luna, A. B., Malik, M., & Laguna, P. (2004). Characterization of QT interval adaptation to RR interval changes and its use as a risk-stratifier of arrhythmic mortality in amiodarone-treated survivors of acute myocardial infarction. IEEE Transactions on Biomedical Engineering, 51, 1511–1520.

    Article  PubMed  Google Scholar 

  14. Starobin, J. M., Cascio, W. E., Goldfarb, A. H., et al. (2007). Identifying coronary artery flow reduction and ischemia using quasistationary QT/RR-interval hysteresis measurements. Journal of Electrocardiology, 40, S91–S96.

    Article  PubMed  Google Scholar 

  15. Lau, C. P., Freedman, A. R., Fleming, S., Malik, M., Camm, A. J., & Ward, D. E. (1988). Hysteresis of the ventricular paced QT interval in response to abrupt changes in pacing rate. Cardiovascular Research, 22, 67–72.

    CAS  Article  PubMed  Google Scholar 

  16. Franz, M. R., Swerdlow, C. D., Liem, L. B., & Schaefer, J. (1988). Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. The Journal of Clinical Investigation, 82, 972–979.

    CAS  Article  PubMed  Google Scholar 

  17. Padrini, R., Speranza, G., Nollo, G., et al. (1997). Adaptation of the QT interval to heart rate changes in isolated perfused guinea pig heart: influence of amiodarone and D-sotalol. Pharmacological Research, 35, 409–416.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Grant No. 102/08/1129 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Asirvatham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Halámek, J., Jurák, P., Bunch, T.J. et al. Use of a novel transfer function to reduce repolarization interval hysteresis. J Interv Card Electrophysiol 29, 23–32 (2010). https://doi.org/10.1007/s10840-010-9500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-010-9500-x

Keywords

  • QT hysteresis
  • QT/RR coupling
  • Transfer function
  • Long QT syndrome