Skip to main content
Log in

Post-operative atrial fibrillation management by selective epicardial vagal fat pad stimulation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Post-operative atrial fibrillation (POAF) is a common complication after cardiac surgery and often leads to poorly tolerated fast ventricular rates. Negative dromotropic drugs are not always effective and may not be well tolerated in heart failure patients. Aim of this study is to verify if high-frequency stimulation of the right inferior fat pad (RIFPS) allows an effective decrease in ventricular rate (VR) during POAF.

Methods

We enrolled 32 consecutive patients submitted to bypass; during surgery, a temporary heart wire was implanted in a site where RIFPS evoked a functional AV block. During POAF, RIFPS was delivered from the heart wire to decrease VR.

Results

Intra-operative RIFPS evoked complete AV block in 29 patients (91%). Fourteen patients (44%) developed POAF (mean VR 127 ± 12 bpm). In these patients, RIFPS achieved a 25% reduction of VR and complete AV block with 6.0 ± 1.9 and 7.5 ± 1.8 V (duration 0.2 ms, frequency 50 Hz), respectively.

Conclusion

Epicardial RIFPS represents an effective and feasible technique to decrease VR during POAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF:

atrial fibrillation

AT:

atrial tachycardia

LVEF:

left ventricular ejection fraction

POAF:

post-operative atrial fibrillation

VR:

ventricular rate

HF:

heart failure

AV:

atrio-ventricular

RIFP:

right inferior vagal fat pad

RIFPS:

right inferior vagal fat pad stimulation

References

  1. Creswell, L. L., Alexander, J. C., Ferguson, T. B., Lisbon, A., & Fleisher, L. A. (2005). American College of Chest Physicians guidelines for the prevention and management of postoperative atrial fibrillation after cardiac surgery. Chest, 128, 28S–35S.

    Article  PubMed  Google Scholar 

  2. Mitchell, L. B., Crystal, E., Heilbron, B., & Pagé, P. (2005). Atrial fibrillation following cardiac surgery. The Canadian Journal of Cardiology, 21, 45B–50B.

    PubMed  Google Scholar 

  3. Crystal, E., Connolly, S. J., Sleik, K., Ginger, T. J., & Yusuf, S. (2002). Interventions on prevention of postoperative atrial fibrillation in patients undergoing heart surgery. A meta-analysis. Circulation, 106, 75–80.

    Article  PubMed  Google Scholar 

  4. Ommen, S. R., Odell, J. A., & Stanton, M. S. (1997). Atrial arrhythmias after cardiothoracic surgery. The New England Journal of Medicine, 336, 1429–1434.

    Article  PubMed  CAS  Google Scholar 

  5. Darwazakh, A. K., Abu Sham’a, R. A., Hussein, E., Hawari, M. H., & Ismail, H. (2006). Myocardial revascularization in patients with low ejection fraction < or =35%: Effect of pump technique on early morbidity and mortality. Journal of Cardiac Surgery, 21(1), 22–27.

    Article  Google Scholar 

  6. Patel, A. A., White, C. M., Gillespie, E. L., Kluger, J., & Coleman, C. I. (2006). Safety of amiodarone in the prevention of postoperative atrial fibrillation: A meta-analysis. American Journal of Health-System Pharmacy, 63(9), 829–837.

    Article  PubMed  CAS  Google Scholar 

  7. Van Gelder, I. C., Van Veldhuisen, D. J., Crijns, H. J., Tuininga, Y. S., Tijssen, J. G., Alings, A. M., et al. (2006). Rate control efficacy in permanent atrial fibrillation: A comparison between lenient versus strict rate control in patients with and without heart failure. Background, aims, and design of RACE II. American Heart Journal, 152(3), 420–426.

    Article  PubMed  Google Scholar 

  8. Auer, J., Weber, T., Berent, R., Puschmann, R., Hartl, P., Ng, C. K., et al. (2004). A comparison between oral antiarrhythmic drugs in the prevention of atrial fibrillation after cardiac surgery: A pilot study of prevention of postoperative atrial fibrillation (SPPAF), a randomized, placebo-controlled trial. American Heart Journal, 147(4), 636–643.

    Article  PubMed  CAS  Google Scholar 

  9. Mitchell, L. B., Exner, D. V., Wyse, D. G., Connolly, C. J., Prystai, G. D., Bayes, A. J., et al. (2005). Prophylactic oral amiodarone for the prevention of arrhythmias that begin early after revascularization, valve replacement, or repair: PAPABEAR: A randomised controlled trial. Journal of the American Medical Association, 294(24), 3093–3100.

    Article  PubMed  CAS  Google Scholar 

  10. Quan, K. J., Lee, J. H., Van Hare, G. F., Biblo, L. A., Mackall, J. A., & Carlson, M. D. (2002). Identification and characterization of atrioventricular parasympathetic innervation in humans. Journal of Cardiovascular Electrophysiology, 13(8), 735–739.

    Article  PubMed  Google Scholar 

  11. West, T. C., & Toda, N. (1967). Response of the A-V node of the rabbit to stimulation of intracardiac cholinergic nerves. Circulation Research, 20(1), 18–31.

    PubMed  CAS  Google Scholar 

  12. Lazzara, R., Scherlag, B. J., Robinson, M. J., & Samet, P. (1973). Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes. Circulation Research, 32(3), 393–401.

    PubMed  CAS  Google Scholar 

  13. Sampaio, K. N., Mauad, H., Spyer, K. M., & Ford, T. W. (2003). Differential chronotropic and dromotropic responses to focal stimulation of cardiac vagal ganglia in the rat. Experimental Physiology, 88(3), 315–327.

    Article  PubMed  Google Scholar 

  14. Schiereck, P., Sanna, N., & Mosterd, L. (2000). AV blocking due to asynchronous vagal stimulation in rats. American Journal of Physiology. Heart and Circulatory Physiology, 278, H67–H73.

    PubMed  CAS  Google Scholar 

  15. Zhang, Y., & Mazgalev, T. N. (2004). Achieving regular slow rhythm during atrial fibrillation without atrioventricular nodal ablation: selective vagal stimulation plus ventricular pacing. Heart Rhythm, 4, 469–475.

    Article  Google Scholar 

  16. Zhang, Y., Mowrey, K. A., Zhuang, S., Wallick, D. W., Popoviæ, Z. B., & Mazgalev, T. N. (2002). Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1102–H1110.

    PubMed  CAS  Google Scholar 

  17. Zhang, Y., Yamada, H., Bibevski, S., Zhuang, S., Mowrey, K. A., Wallick, D. W., et al. (2005). Chronic atrioventricular nodal vagal stimulation. First evidence for long-term ventricular rate control in canine atrial fibrillation model. Circulation, 112, 2904–2911.

    PubMed  Google Scholar 

  18. Rosenkranz, E. R., & Buckberg, G. D. (1983). Myocardial protection during surgical coronary reperfusion. Journal of the American College of Cardiology, 1, 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  19. Chiou, C. W., & Zipes, D. P. (1998). Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation, 98, 360–368.

    PubMed  CAS  Google Scholar 

  20. Schauerte, P., Mischke, K., Plisiene, J., Waldmann, M., Zarse, M., Stellbrink, C., et al. (2001). Catheter stimulation of cardiac parasympathetic nerves in humans—A novel approach to the cardiac autonomic nervous system. Circulation, 104, 2430–2435.

    Article  PubMed  CAS  Google Scholar 

  21. Haghjoo, M., Saravi, M., Hashemi, M. J., Hosseini, S., Givtaj, N., Ghafarinejad, M. H., et al. (2007). Optimal beta-blocker for prevention of atrial fibrillation after on-pump coronary artery bypass graft surgery: Carvedilol versus metoprolol. Heart Rhythm, 4(9), 1170–1174.

    Article  PubMed  Google Scholar 

  22. Wesslén, O., Hallhagen, S., Ekroth, R., Jagenburg, R., Joachimsson, P. O., Nordgren, L., et al. (1992). High-dose intravenous beta 1-blockade in patients early after cardiac operations. Negative inotropism versus myocardial oxygen economy. The Journal of Thoracic and Cardiovascular Surgery, 104(6), 1672–1678.

    PubMed  Google Scholar 

  23. Pieper, J. A. (1996). Evolving role of calcium channel blockers in heart failure. Pharmacotherapy, 16, 43S–49S.

    PubMed  CAS  Google Scholar 

  24. Mahé, I., Chassany, O., Grenard, A. S., Caulin, C., & Bergmann, J. F. (2003). Defining the role of calcium channel antagonists in heart failure due to systolic dysfunction. American Journal of Cardiovascular Drugs, 3(1), 33–41.

    Article  PubMed  Google Scholar 

  25. Aranki, S. F., Shaw, D. P., Adams, D. H., Rizzo, R. J., Couper, G. S., VanderVliet, M., et al. (1996). Predictors of atrial fibrillation after coronary artery surgery. Current trends and impact on hospital resources. Circulation, 94, 390–397.

    PubMed  CAS  Google Scholar 

  26. Lewis, M. E., Al-Khalidi, A. H., Bonser, R. S., Clutton-Brock, T., Morton, D., Paterson, D., et al. (2001). Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. The Journal of Physiology, 534, 547–552.

    Article  PubMed  CAS  Google Scholar 

  27. Quan, K. J., Lee, J. H., Van Hare, G. F., Biblo, L. A., Mackall, J. A., & Carlson, M. D. (2001). Endocardial stimulation of efferent parasympathetic nerves to the atrioventricular node in humans: Optimal stimulation sites and the effects of digoxin. Journal of Interventional Cardiac Electrophysiology, 5, 145–152.

    Article  PubMed  CAS  Google Scholar 

  28. Hou, Y., Scherlag, B. J., Lin, J., Zhou, J., Song, J., Zhang, Y., et al. (2007). Interactive atrial neural network: Determining the connections between ganglionated plexus. Heart Rhythm, 4, 56–63.

    Article  PubMed  Google Scholar 

  29. Hou, Y., Scherlag, B., Lin, J., Zhang, Y., Lu, Z., Truong, K., et al. (2007). Ganglionated plexus modulate extrinsic cardiac autonomic nerve input. Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. Journal of the American College of Cardiology, 50, 61–68.

    Article  PubMed  Google Scholar 

  30. Po, S. S., Li, Y., Tang, D., Liu, H., Geng, N., Jackman, W. M., et al. (2005). Rapid and stable re-entry within the pulmonary vein as a mechanism initiating paroxysmal atrial fibrillation. Journal of the American College of Cardiology, 45, 1871–1877.

    Article  PubMed  Google Scholar 

  31. Po, S. S., Scherlag, B. J., Yamanashi, W. S., Edwards, J., Zhou, J., Wu, R., et al. (2006). Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein–atrial junctions. Heart Rhythm, 3, 201–208.

    Article  PubMed  Google Scholar 

  32. Horikawa-Tanami, T., Hirao, K., Furukawa, T., & Isobe, M. (2007). Mechanism of the conversion of a pulmonary vein tachycardia to atrial fibrillation in normal canine hearts: Role of autonomic nerve stimulation. Journal of Cardiovascular Electrophysiology, 18(5), 534–541.

    Article  PubMed  Google Scholar 

  33. Patterson, E., Yu, X., Huang, S., Garret, M., & Kem, D. C. (2006). Suppression of automatic-mediated triggered firing in pulmonary vein preparations, 24 hours postcoronary artery ligation in dogs. Journal of Cardiovascular Electrophysiology, 17, 763–770.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Giancarlo Monari for his technical support and Tiziana De Santo (Medtronic Italy) for her assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Rossi.

Additional information

A. Della Scala and L. Kornet are employees of Medtronic. No other conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, P., Bianchi, S., Barretta, A. et al. Post-operative atrial fibrillation management by selective epicardial vagal fat pad stimulation. J Interv Card Electrophysiol 24, 37–45 (2009). https://doi.org/10.1007/s10840-008-9286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-008-9286-2

Keywords

Navigation