Skip to main content
Log in

Early heparinization decreases the incidence of left atrial thrombi detected by intracardiac echocardiography during radiofrequency ablation for atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Introduction

We reviewed our experience in managing intracardiac ultrasound-detected left atrial thrombus and analyzed the impact of the timing of heparin therapy on thrombus incidence.

Methods and Results

We identified 508 patients undergoing ablation procedures for atrial fibrillation in which intracardiac ultrasound was used. All patients received unfractionated heparin during the procedure: 31 patients before the first transseptal puncture (preTS1), 257 between the first and second transseptal punctures (TS1–TS2), and 220 following both punctures (postTS2). By using intracardiac echocardiography (ICE), thrombus was detected in 30 of these 508 patients (5.9%). Of these, 29 were in the left atrium and constituted our study group. In 21 patients, the thrombi were successfully aspirated from the left atrium using strong suction through the transseptal sheath. All patients in whom thrombi were aspirated did well without neurological event or death. When patients received heparin therapy either preTS1 or TS1–TS2, there was a significant decrease in the occurrence of ICE-detected left atrial thrombus compared with those who received heparin postTS2 (0 of 31 patients (0%) preTS, 9 of 257 (3.5%) TS1–TS2, and 20 of 220 (9.1%) postTS2; (preTS1 vs postTS2, p = 0.01; preTS2 [preTS1 and TS1–TS2] vs postTS2, p < 0.001).

Conclusion

Early administration of intravenous heparin, specifically before transseptal puncture, decreases the incidence of left atrial thrombi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACT:

activated coagulation time

ICE:

intracardiac echocardiography

TS:

transseptal puncture

EPS:

electrophysiologic study

TEE:

transesophageal echocardiography

MHz:

megahertz

CHI2 :

ҳ 2 test

preTS1:

prior–before the first transseptal puncture

TS1–TS2:

between the first and second transseptal puncture

postTS2:

after the second transseptal

References

  1. Cappato, R., Calkins, H., Chen, S. A., Davies, W., Iesaka, Y., Kalman, J., et al. (2005). Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation, 111, 1100–1105.

    Article  PubMed  Google Scholar 

  2. Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339, 659–666.

    Article  PubMed  CAS  Google Scholar 

  3. Packer, D. L., Asirvatham, S., & Munger, T. M. (2003). Progress in nonpharmacologic therapy of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14, S296–S309.

    Article  PubMed  Google Scholar 

  4. Nademenee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., et al. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of American College of Cardiology, 43, 2044–2053.

    Article  Google Scholar 

  5. Pappone, C., & Rosanio, S. (2003). Evolution of non-pharmacological curative therapy for atrial fibrillation. Where do we stand today? International Journal of Cardiology, 88, 135–142.

    Article  PubMed  Google Scholar 

  6. Wazni, O., Rossillo, A., Marrouche, N., Saad, E., Martin, D., Bhargava, M., et al. (2005). Embolic events and char formation during pulmonary vein isolation in patients with atrial fibrillation: Impact of different anticoagulation regimens and importance of intracardiac echo imaging. Journal of Cardiovascular Electrophysiology, 16, 576–581.

    Article  PubMed  Google Scholar 

  7. Hynes, B. J., Mart, C., Artman, S., Pu, M., & Naccarelli, G. V. (2004). Role of intracardiac ultrasound in interventional electrophysiology. Current Opinion in Cardiology, 19, 52–57.

    Article  PubMed  Google Scholar 

  8. Kautzner, J., & Peichl, P. (2007). Intracardiac echocardiography in electrophysiology. Herzschrittmachertherapie & Elektrophysiologie, 18, 140–146.

    Article  CAS  Google Scholar 

  9. Ren, J., & Marchlinski, F. (2007). Utility of intracardiac echocardiography in left heart ablation for tachyarrhythmias. Echocardiography, 24, 533–540.

    Article  PubMed  Google Scholar 

  10. Keane, D., Mansour, M., & Singh, J. (2004). Detection by intracardiac echocardiography of early formation of left atrial thrombus during pulmonary vein isolation. Europace, 6, 109–110.

    Article  PubMed  Google Scholar 

  11. Marrouche, N., Martin, D., Wazni, O., Gillinov, A., Klein, A., Bhargava, M., et al. (2003). Phased-array intracardiac echocardiography monitoring during pulmonary vein isolation in patients with atrial fibrillation: Impact on outcome and complications. Circulation, 107, 2710–2716.

    Article  PubMed  Google Scholar 

  12. Okuyama, Y., Kashiwase, K., Mizuno, H., Oka, T., Takeda, Y., Komatsu, S., et al. (2006). Development of thrombus on a transseptal sheath in the left atrium during attempted electrical pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation. Europace, 8, 191–192.

    Article  PubMed  Google Scholar 

  13. Ren, J. F., Marchlinski, F. E., & Callans, D. J. (2004). Left atrial thrombus associated with ablation for atrial fibrillation: Identification with intracardiac echocardiography. Journal of the American College of Cardiology, 43, 1861–1867.

    Article  PubMed  Google Scholar 

  14. Ren, J. F., Marchlinski, F. E., & Callans, D. J. (2006). Real-time intracardiac echocardiographic imaging of the posterior left atrial wall contiguous to anterior wall of the esophagus. Journal of the American College of Cardiology, 48, 594 author reply 594–595.

    Article  PubMed  Google Scholar 

  15. Ren, J. F., Marchlinski, F. E., Callans, D. J., Gerstenfeld, E. P., Dixit, S., Lin, D., et al. (2005). Increased intensity of anticoagulation may reduce risk of thrombus during atrial fibrillation ablation procedures in patients with spontaneous echo contrast. Journal of Cardiovascular Electrophysiology, 16, 474–477.

    Article  PubMed  Google Scholar 

  16. Asirvatham, S. J., Bruce, C. J., & Friedman, P. A. (2003). Advances in imaging for cardiac electrophysiology. Coronary Artery Disease, 14, 3–13.

    Article  PubMed  Google Scholar 

  17. Roman-Gonzalez, J., Asirvatham, S. J., Razavi, M., Packer, D. L., Grice, S. K., Friedman, P. A., et al. (2001). Marked discrepancies between catheter tip temperature registration and pulmonary vein tissue changes during ablation of focal atrial fibrillation in patients. (Abstract 470). PACE, 24, 656.

    Google Scholar 

  18. Asirvatham, S. J. (2007). Pacing maneuvers for nonpulmonary vein sources: part II. Heart Rhythm, 4, 681–685.

    Article  PubMed  Google Scholar 

  19. Bunch, T. J., Connolly, H. M., Asirvatham, S. J., Brady, P. A., Gersh, B. J., Munger, T. M., et al. (2007). Catheter ablation for atrial fibrillation in patients with the Marfan and Marfan-like syndromes. Journal of Interventional Cardiac Electrophysiology, 20, 15–20.

    Article  PubMed  Google Scholar 

  20. Martelo, S., D'Avila, A., Ferreira, F., & Saad, E. (2006). Implantation of bilateral carotid artery filters to allow safe removal of left atrial thrombus during ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 17, 1140–1141.

    Article  PubMed  Google Scholar 

  21. Asirvatham, S., & Friedman, P. (2006). Silent cerebral thromboembolism with left atria ablation: A lurking danger. Journal of Cardiovascular Electrophysiology, 17, 8–10.

    PubMed  Google Scholar 

  22. Chen, S. A., Chiang, C. E., Tai, C. T., Cheng, C. C., Chiou, C. W., Lee, S. H., et al. (1996). Complications of diagnostic electrophysiologic studies and radiofrequency catheter ablation in patients with tachyarrhythmias: An eight-year survey of 3,966 consecutive procedures in a tertiary referral center. American Journal of Cardiology, 77, 41–46.

    Article  PubMed  CAS  Google Scholar 

  23. Epstein, M. R., Knapp, L. D., Martindill, M., Lulu, J. A., Triedman, J. K., Calkins, H., et al. (1996). Embolic complications associated with radiofrequency catheter ablation. Atakr Investigator Group. American Journal of Cardiology, 77, 655–658.

    Article  PubMed  CAS  Google Scholar 

  24. Oral, H., Chugh, A., Ozaydin, M., Good, E., Fortino, J., Sankaran, S., et al. (2006). Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation. Circulation, 114, 759–765.

    Article  PubMed  Google Scholar 

  25. Asirvatham, S. J. (2007). Ablation for atrial fibrillation: can we decrease thromboembolism without increasing the risk for bleeding? Circulation, 116, 2517–2519.

    Article  PubMed  Google Scholar 

  26. Kok, L. C., Mangrum, J. M., Haines, D. E., & Mounsey, J. P. (2002). Cerebrovascular complication associated with pulmonary vein ablation. Journal of Cardiovascular Electrophysiology, 13, 764–767.

    Article  PubMed  Google Scholar 

  27. Kalman, J. M., Fitzpatrick, A. P., Olgin, J. E., Chin, M. C., Lee, R. J., Scheinman, M. M., et al. (1997). Biophysical characteristics of radiofrequency lesion formation in vivo: Dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography. American Heart Journal, 133, 8–18.

    Article  PubMed  CAS  Google Scholar 

  28. Asirvatham, S., & Narayan, O. (2006). Advanced catheter mapping and navigation systems. In S. Huang, & M. Wood (Eds.), Catheter ablation of cardiac arrhythmias. Philadelphia: Saunders/Elsevier.

    Google Scholar 

  29. Black, I. W. (2000). Spontaneous echo contrast: where there’s smoke there’s fire. Echocardiography, 17, 373–382.

    Article  PubMed  CAS  Google Scholar 

  30. Bunch, T. J., Asirvatham, S. J., Friedman, P. A., Monahan, K. H., Munger, T. M., Rea, R. F., et al. (2005). Outcomes after cardiac perforation during radiofrequency ablation of the atrium. Journal of Cardiovascular Electrophysiology, 16, 1172–1179.

    Article  PubMed  Google Scholar 

  31. Demolin, J. M., Eick, O. J., Munch, K., Koullick, E., Nakagawa, H., & Wittkampf, F. H. (2002). Soft thrombus formation in radiofrequency catheter ablation. Pacing and Clinical Electrophysiology, 25, 1219–1222.

    Article  PubMed  Google Scholar 

  32. Wyse, D. (2007). Anticoagulation in atrial fibrillation: A contemporary viewpoint. Heart Rhythm, 4, S34–S39.

    Article  PubMed  Google Scholar 

  33. Carasso, S., Kuperstein, R., Konen, E., Glikson, M., & Feinberg, M. (2006). Plowing the atrium and growing thrombi: Two cases of large atrial thrombi following ablative and surgical procedure for atrial fibrillation. European Journal of Echocardiography, 7, 383–386.

    Article  PubMed  Google Scholar 

  34. Bulava, A., Slavik, L., Fiala, M., Heinc, P., Skvarilova, M., Lukl, J., et al. (2004). Endothelial damage and activation of the hemostatic system during radiofrequency catheter isolation of pulmonary veins. Journal of Interventional Cardiac Electrophysiology, 10, 271–279.

    Article  PubMed  Google Scholar 

  35. Lim, B., Venkatachalam, K., Jahangir, A., Johnson, S., & Asirvatham, S. (2008). Concurrent application of charge using a novel circuit helps prevent heat-related coagulum formation during radiofrequency ablation. Journal of Cardiovascular Electrophysiology.

  36. Kilicaslan, F., Verma, A., Saad, E., Rossillo, A., Davis, D., Prasad, S., et al. (2006). Transcranial Doppler detection of microembolic signals during pulmonary vein antrum isolation: Implications for titration of radiofrequency energy. Journal of Cardiovascular Electrophysiology, 17, 495–501.

    Article  PubMed  Google Scholar 

  37. Wazni, O. M., Beheiry, S., Fahmy, T., Barrett, C., Hao, S., Patel, D., et al. (2007). Atrial fibrillation ablation in patients with therapeutic international normalized ratio: Comparison of strategies of anticoagulation management in the periprocedural period. Circulation, 116, 2531–2534.

    Article  PubMed  Google Scholar 

  38. Lim, B., Venkatachalam, K., Jahangir, A., & Asirvatham, S. (2007). Mechanism of coagulum formation in radiofrequency ablation and a novel method to prevent it. JACC, 49, 422A.

    Google Scholar 

  39. Lickfett, L., Hackenbroch, M., Lewalter, T., Selbach, S., Schwab, J., Yang, A., et al. (2006). Cerebral diffusion-weighted magnetic resonance imaging: A tool to monitor the thrombogenicity of left atrial catheter ablation. Journal of Cardiovascular Electrophysiology, 17, 1–7.

    PubMed  Google Scholar 

  40. Hockstad, E., & Gornick, C. C. (1994). Mildly symptomatic pulmonary emboli associated with electrophysiologic procedures. Indications for anticoagulant use. Chest, 106, 1908–1911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Asirvatham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruce, C.J., Friedman, P.A., Narayan, O. et al. Early heparinization decreases the incidence of left atrial thrombi detected by intracardiac echocardiography during radiofrequency ablation for atrial fibrillation. J Interv Card Electrophysiol 22, 211–219 (2008). https://doi.org/10.1007/s10840-008-9270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-008-9270-x

Keywords

Navigation