Skip to main content
Log in

Successful use of “cryo-mapping” to avoid phrenic nerve damage during ostial superior vena caval ablation despite nerve proximity

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

The SVC may require ablation to treat atrial fibrillation. Phrenic nerve proximity identified with pacing maneuvers may preclude ablation.

Methods

We tested a new method using “cryo-mapping” to ablate despite nerve proximity.

Results

Of 833 patients undergoing ablation, 110 (12%) had arrhythmogenic substrate at the SVC/RA junction. Of these 110 patients, 66 (60%) had consistent diaphragmatic stimulation when pacing at 10 mA at the prospective site of ablation. Of these 66 patients, 7 had continued arrhythmogenicity despite attempts to modify this substrate. For these 7 patients, we paced 4 cm into the SVC where consistent phrenic nerve stimulation was obtained, and cryoablation at −30°C was performed at sites requiring ablation. In 6 of 7 patients (86%), with continued diaphragmatic capture, cryoablation at −70/−80°C was then performed. In 1 of 7 patients (14%), diaphragmatic stimulation ceased at −30°C, and energy delivery stopped. In the 6 patients in whom cryoablation was completed, the arrhythmogenic substrate was successfully ablated without phrenic nerve injury.

Conclusions

A novel “cryo-mapping” technique during phrenic nerve pacing can be used to successfully ablate arrhythmogenic substrate at the SVC/RA junction despite phrenic nerve proximity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go, A. S., et al. (2001). Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA, 285, 2370–2375.

    Article  PubMed  CAS  Google Scholar 

  2. Pappone, C., & Santinelli, V. (2001). Pulmonary vein isolation by circumferential radiofrequency lesions in atrial fibrillation. From substrate to clinical outcome. Annali dell’Istituto superiore di sanita, 37, 401–407.

    PubMed  CAS  Google Scholar 

  3. Lin, W. S., et al. (2003). Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation, 107, 3176–3183.

    Article  PubMed  Google Scholar 

  4. Kalman, J. M., et al. (1998). Cristal tachycardias": origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography. Journal of the American College of Cardiology, 31, 451–459.

    Article  PubMed  CAS  Google Scholar 

  5. Collins, K. K., et al. (2006). Cryoablation versus radiofrequency ablation for treatment of pediatric atrioventricular nodal reentrant tachycardia: initial experience with 4-mm cryocatheter, [see comment]. Heart Rhythm, 3, 564–570.

    Article  PubMed  Google Scholar 

  6. Damiano Jr., R. J. (2003). Alternative energy sources for atrial ablation: judging the new technology. Annals of Thoracic Surgery, 75, 329–330 [comment].

    Article  PubMed  Google Scholar 

  7. Garan, A., et al. (2006). Cryoablation of the pulmonary veins using a novel balloon catheter. Journal of Interventional Cardiac Electrophysiology, 15, 79–81.

    Article  PubMed  Google Scholar 

  8. Wong, T., et al. (2004). Percutaneous isolation of multiple pulmonary veins using an expandable circular cryoablation catheter. Pacing and Clinical Electrophysiology, 27, 551–554.

    Article  PubMed  Google Scholar 

  9. Gurevitz, O. T., et al. (2005). Use of advanced mapping systems to guide ablation in complex cases: experience with noncontact mapping and electroanatomic mapping systems. Pacing and Clinical Electrophysiology, 28, 316–323.

    Article  PubMed  Google Scholar 

  10. Shah, D. C., et al. (2001). Curative catheter ablation of paroxysmal atrial fibrillation in 200 patients: strategy for presentations ranging from sustained atrial fibrillation to no arrhythmias. Pacing and Clinical Electrophysiology, 24, 1541–1558.

    Article  PubMed  CAS  Google Scholar 

  11. Asirvatham, S. J., Bruce, C. J., & Friedman, P. A. (2003). Advances in imaging for cardiac electrophysiology. Coronary Artery Disease, 14, 3–13.

    Article  PubMed  Google Scholar 

  12. Asirvatham, S. (2007). Pacing maneuvers for nonpulmonary vein sources: Part II. Heart Rhythm, 4, 681–685.

    Article  PubMed  Google Scholar 

  13. Asirvatham, S. J. (2007). Pulmonary vein-related maneuvers: Part I. Heart Rhythm, 4, 538–544.

    Article  PubMed  Google Scholar 

  14. Asirvatham, S. (2004). Anatomy of the vena cava: An electrophysiolgoical perspective. In S. Chen, M. Haissaguerre, & D. Zipes (Eds.) Thoracic vein arrhythmias: Mechanisms and treatment (54–65). Malden, MA: Blackwell/Futura.

    Google Scholar 

  15. Pastor, A., et al. (2007). The superior vena cava as a site of ectopic foci in atrial fibrillation. Revista española de cardiologia, 60, 68–71.

    PubMed  Google Scholar 

  16. Asirvatham, S., et al. (2001). Does atrial myocardium extend into the superior vena cava and azygos vein? Circulation, 104(Suppl 17), 730.

    Google Scholar 

  17. Arora, R. (2005). Phrenic nerve injury—yet another Achilles’ heel for AF ablation? [comment]. Journal of Cardiovascular Electrophysiology, 16, 1326–1328.

    Article  PubMed  Google Scholar 

  18. Sung, R. J., & Lauer, M. R. (2006). Is electrode catheter ablation-induced phrenic nerve injury really a benign condition? [comment]. Journal of Cardiovascular Electrophysiology, 17, 949–950.

    Article  PubMed  Google Scholar 

  19. Packer, D., et al. (2004). Imaging of the cardiac and thoracic veins. In S. Chen, M. Haissaguerre, & D. Zipes (Eds.) Thoraic vein arrhythmias: Mechanisms and treatment. Malden, MA: Blackwell/Futura.

    Google Scholar 

  20. Bunch, T. J., et al. (2005). Mechanisms of phrenic nerve injury during radiofrequency ablation at the pulmonary vein orifice, [see comment]. Journal of Cardiovascular Electrophysiology, 16, 1318–1325.

    Article  PubMed  Google Scholar 

  21. Cappato, R., et al. (2005). Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation, 111, 1100–1105.

    Article  PubMed  Google Scholar 

  22. Collins, K. K., et al. (2006). Cryoablation in pediatric atrioventricular nodal reentry: electrophysiologic effects on atrioventricular nodal conduction. Heart Rhythm, 3, 557–563.

    Article  PubMed  Google Scholar 

  23. Gupta, D., et al. (2006). Cryoablation compared with radiofrequency ablation for atrioventricular nodal re-entrant tachycardia: analysis of factors contributing to acute and follow-up outcome. Europace, 8, 1022–1026.

    Article  PubMed  Google Scholar 

  24. Hoyt, R. H., et al. (2005). Transvenous catheter cryoablation for treatment of atrial fibrillation: results of a feasibility study. Pacing and Clinical Electrophysiology, 28(Suppl 1), S78–S82.

    Article  PubMed  Google Scholar 

  25. Isobe, N., et al. (2004). Factors predicting success in cryoablation of the pulmonary veins in patients with chronic atrial fibrillation. Circulation, 68, 999–1003.

    Article  Google Scholar 

  26. Kimman, G. P., & Jordaens, L. J. (2006). Transvenous radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia and its pitfalls: a rationale for cryoablation? International Journal of Cardiology, 108, 6–11.

    Article  PubMed  CAS  Google Scholar 

  27. Antz, M., et al. (2006). Ablation of atrial fibrillation in humans using a balloon-based ablation system: identification of the site of phrenic nerve damage using pacing maneuvers and CARTO. Journal of Cardiovascular Electrophysiology, 17, 1242–1245.

    Article  PubMed  Google Scholar 

  28. Sacher, F., et al. (2006). Phrenic nerve injury after atrial fibrillation catheter ablation: characterization and outcome in a multicenter study. Journal of the American College of Cardiology, 47, 2498–2503.

    Article  PubMed  Google Scholar 

  29. Swallow, E. B., et al. (2006). Right hemi-diaphragm paralysis following cardiac radiofrequency ablation. Respiratory Medicine, 100, 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  30. Bai, R., et al. (2006). Phrenic nerve injury after catheter ablation: should we worry about this complication? Journal of Cardiovascular Electrophysiology, 17, 944–948.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Asirvatham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dib, C., Kapa, S., Powell, B.D. et al. Successful use of “cryo-mapping” to avoid phrenic nerve damage during ostial superior vena caval ablation despite nerve proximity. J Interv Card Electrophysiol 22, 23–30 (2008). https://doi.org/10.1007/s10840-008-9242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-008-9242-1

Keywords

Navigation