Skip to main content
Log in

Surgical ablation devices for atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

The introduction of ablation technology has revolutionized the surgical treatment of atrial fibrillation (AF). It has greatly simplified surgical approaches and has significantly increased the number of procedures being performed. Various energy sources have been used clinically, including cryoablation, radiofrequency, microwave, laser, and high-frequency ultrasound. The goal of these devices is to create conduction block to either block activation wavefronts or to isolate the triggers of AF. All present devices have been shown to have clinical efficacy in some patients. The devices each have their unique advantages and disadvantages. It is important that surgeons develop accurate dose-response curves for new devices in clinically relevant models on both the arrested and beating heart. This will allow the appropriate use of technology to facilitate AF surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prasad, S. M., Maniar, H. S., Camillo, C. J., et al. (2003). The Cox Maze III procedure for atrial fibrillation: Long-term efficacy in patients undergoing lone versus concomitant procedures. Journal of Thoracic and Cardiovascular Surgery, 126(6), 1822–1828.

    Article  PubMed  Google Scholar 

  2. Raanani, E., Albage, A., David, T. E., et al. (2001). The efficacy of the Cox/Maze procedure combined with mitral valve surgery: A matched control study. European Journal of Cardio-thoracic Surgery, 19(4), 438–442.

    Article  PubMed  CAS  Google Scholar 

  3. Doty, D. B., Dilip, K. A., & Millar, R. C. (2000). Mitral valve replacement with homograft and Maze III procedure. Annals of Thoracic Surgery, 69(3), 739–742.

    Article  PubMed  CAS  Google Scholar 

  4. Schaff, H. V., Dearani, J. A., Daly, R. C., et al. (2000). Cox-Maze procedure for atrial fibrillation: Mayo Clinic experience. Seminars in Thoracic and Cardiovascular Surgery, 12(1), 30–37.

    PubMed  CAS  Google Scholar 

  5. Mitchell, M. A., McRury, I. D., Everett, T. H., et al. (1999). Morphological and physiological characteristics of discontinuous linear atrial ablations during atrial pacing and atrial fibrillation. Journal of Cardiovascular Electrophysiology, 10(3), 378–386.

    Article  PubMed  CAS  Google Scholar 

  6. Melby, S. J., Lee, A. M., Schuessler, R. B., & Damiano, R. J. (2005). The effect of residual gaps in ablation lines for the treatment of atrial fibrillation. Heart Rhythm, 2(5), S15.

    Article  Google Scholar 

  7. Melby, S., Zierer, A., Kaiser, S., et al. (2006). Epicardial microwave ablation on the beating heart for atrial fibrillation: the dependency of lesion depth on cardiac output. Journal of Thoracic and Cardiovascular Surgery, 132, 355–360.

    Article  PubMed  Google Scholar 

  8. Steinbach, J. P., Weissenberger, J., & Aguzzi, A. (1999). Distinct phases of cryogenic tissue damage in the cerebral cortex of wild-type and c-fos deficient mice. Neuropathology & Applied Neurobiology, 25(6), 468–480.

    Article  CAS  Google Scholar 

  9. Holman, W. L., Ikeshita, M., Douglas, J. M., Jr., et al. (1983). Ventricular cryosurgery: Short-term effects on intramural electrophysiology. Annals of Thoracic Surgery, 35(4), 386–393.

    Article  PubMed  CAS  Google Scholar 

  10. Wetstein, L., Mark, R., Kaplan, A., et al. (1985). Nonarrhythmogenicity of therapeutic cryothermic lesions of the myocardium. Journal of Surgical Research, 39(6), 543–554.

    Article  PubMed  CAS  Google Scholar 

  11. Lustgarten, D. L., Keane, D., & Ruskin, J. (1999). Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias. Progress in Cardiovascular Diseases, 41(6), 481–498.

    Article  PubMed  CAS  Google Scholar 

  12. Manasse, E., Colombo, P., Roncalli, M., & Gallotti, R. (2000). Myocardial acute and chronic histological modifications induced by cryoablation. European Journal of Cardio-thoracic Surgery, 17(3), 339–340.

    Article  PubMed  CAS  Google Scholar 

  13. Hunt, G. B., Chard, R. B., Johnson, D. C., & Ross, D. L. (1989). Comparison of early and late dimensions and arrhythmogenicity of cryolesions in the normothermic canine heart. Journal of Thoracic and Cardiovascular Surgery, 97(2), 313–318.

    PubMed  CAS  Google Scholar 

  14. Guiraudon, G. M., Jones, D. L., Skanes, A. C., et al. (2005). En bloc exclusion of the pulmonary vein region in the pig using off pump, beating, intra-cardiac surgery: A pilot study of minimally invasive surgery for atrial fibrillation. Annals of Thoracic Surgery, 80(4), 1417–1423.

    Article  PubMed  Google Scholar 

  15. Doll, N., Kornherr, P., Aupperle, H., et al. (2003). Epicardial treatment of atrial fibrillation using cryoablation in an acute off-pump sheep model. Thoracic and Cardiovascular Surgeon, 51(5), 267–273.

    Article  PubMed  CAS  Google Scholar 

  16. Milla, F., Skubas, N., Briggs, W. M., et al. (2006). Epicardial beating heart cryoablation using a novel argon-based cryoclamp and linear probe. Journal of Thoracic and Cardiovascular Surgery, 131(2), 403–411.

    Article  PubMed  Google Scholar 

  17. Mikat, E. M., Hackel, D. B., Harrison, L., et al. (1977). Reaction of the myocardium and coronary arteries to cryosurgery. Laboratory Investigation, 37(6), 632–641.

    PubMed  CAS  Google Scholar 

  18. Holman, W. L., Ikeshita, M., Ungerleider, R. M., et al. (1983). Cryosurgery for cardiac arrhythmias: Acute and chronic effects on coronary arteries. American Journal of Cardiology, 51(1), 149–155.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe, H., Hayashi, J., & Aizawa, Y. (2002). Myocardial infarction after cryoablation surgery for Wolff-Parkinson-White syndrome. Japanese Journal of Thoracic and Cardiovascular Surgery, 50(5), 210–212.

    Article  PubMed  Google Scholar 

  20. Aupperle, H., Doll, N., Walther, T., et al. (2005). Ablation of atrial fibrillation and esophageal injury: Effects of energy source and ablation technique. Journal of Thoracic and Cardiovascular Surgery, 130(6), 1549–1554.

    Article  PubMed  Google Scholar 

  21. Mack, C. A., Milla, F., Ko, W., et al. (2005). Surgical treatment of atrial fibrillation using argon-based cryoablation during concomitant cardiac procedures. Circulation, 112(9 suppl), I1–I6.

    PubMed  Google Scholar 

  22. Doll, N., Kiaii, B. B., Fabricius, A. M., et al. (2003). Intraoperative left atrial ablation (for atrial fibrillation) using a new argon cryocatheter: Early clinical experience. Annals of Thoracic Surgery, 76(5), 1711–1715; discussion 1715.

    Article  PubMed  Google Scholar 

  23. Viola, N., Williams, M. R., Oz, M. C., & Ad, N. (2002). The technology in use for the surgical ablation of atrial fibrillation. Seminars in Thoracic and Cardiovascular Surgery, 14(3), 198–205.

    PubMed  Google Scholar 

  24. Wolf, R. K., Schneeberger, E. W., Osterday, R., et al. (2005). Video-assisted bilateral pulmonary vein isolation and left atrial appendage exclusion for atrial fibrillation. Journal of Thoracic and Cardiovascular Surgery, 130(3), 797–802.

    Article  PubMed  Google Scholar 

  25. Khargi, K., Deneke, T., Haardt, H., et al. (2001). Saline-irrigated, cooled-tip radiofrequency ablation is an effective technique to perform the Maze procedure. Annals of Thoracic Surgery, 72(3), S1090–S1095.

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa, H., Wittkampf, F. H., Yamanashi, W. S., et al. (1998). Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation, 98(5), 458–465.

    PubMed  CAS  Google Scholar 

  27. Prasad, S. M., Maniar, H. S., Schuessler, R. B., & Damiano, R. J., Jr. (2002). Chronic transmural atrial ablation by using bipolar radiofrequency energy on the beating heart. Journal of Thoracic and Cardiovascular Surgery, 124(4), 708–713.

    Article  PubMed  Google Scholar 

  28. Prasad, S. M., Maniar, H. S., Diodato, M. D., et al. (2003). Physiological consequences of bipolar radiofrequency energy on the atria and pulmonary veins: A chronic animal study. Annals of Thoracic Surgery, 76(3), 836–841.

    Article  PubMed  Google Scholar 

  29. Gaynor, S. L., Ishii, Y., Diodato, M. D., et al. (2004). Successful performance of Cox-Maze procedure on beating heart using bipolar radiofrequency ablation: A feasibility study in animals. Annals of Thoracic Surgery, 78(5), 1671–1677.

    Article  PubMed  Google Scholar 

  30. Melby, S. J., Gaynor, S. L., Lubahn, J. G., et al. (2006). Efficacy and safety of right and left atrial ablations on the beating heart with irrigated bipolar radiofrequency energy: A long-term animal study. Journal of Thoracic and Cardiovascular Surgery, 132(4), 853–860.

    Article  PubMed  Google Scholar 

  31. Kress, D. C., Krum, D., Chekanov, V., et al. (2002). Validation of a left atrial lesion pattern for intraoperative ablation of atrial fibrillation. Annals of Thoracic Surgery, 73(4), 1160–1168.

    Article  PubMed  Google Scholar 

  32. Santiago, T., Melo, J. Q., Gouveia, R. H., & Martins, A. P. (2003). Intra-atrial temperatures in radiofrequency endocardial ablation: Histologic evaluation of lesions. Annals of Thoracic Surgery, 75(5), 1495.

    Article  PubMed  Google Scholar 

  33. Thomas, S. P., Guy, D. J., Boyd, A. C., et al. (2003). Comparison of epicardial and endocardial linear ablation using handheld probes. Annals of Thoracic Surgery, 75(2), 543–548.

    Article  PubMed  Google Scholar 

  34. Bugge, E., Nicholson, I. A., & Thomas, S. P. (2005). Comparison of bipolar and unipolar radiofrequency ablation in an in vivo experimental model. European Journal of Cardio-thoracic Surgery, 28(1), 76–80; discussion 80–82.

    Article  PubMed  Google Scholar 

  35. Santiago, T., Melo, J., Gouveia, R. H., et al. (2003). Epicardial radiofrequency applications: In vitro and in vivo studies on human atrial myocardium. European Journal of Cardio-thoracic Surgery, 24(4), 481–486; discussion 486.

    Article  PubMed  Google Scholar 

  36. Vigilance, D. W., Garrido, M., Williams, M., et al. (2006). Off-pump epicardial atrial fibrillation surgery utilizing a novel bipolar radiofrequency system. Heart Surgery Forum, 9(5), E803–E806.

    Article  PubMed  Google Scholar 

  37. Gaynor, S. L., Diodato, M. D., Prasad, S. M., et al. (2004). A prospective, single-center clinical trial of a modified Cox Maze procedure with bipolar radiofrequency ablation. Journal of Thoracic and Cardiovascular Surgery, 128(4), 535–542.

    Article  PubMed  Google Scholar 

  38. Caccitolo, J. A., Stulak, J. M., Schaff, H. V., Francischelli, D., Jensen, D. N., & Mehra, R. (2001). Open-heart endocardial radiofrequency ablation: An alternative to incisions in Maze surgery. Journal of Surgical Research, 97, 27–33.

    Article  PubMed  CAS  Google Scholar 

  39. Hamner, C. E., Potter, D. D., Cho, K. R., Lutterman, A., Francischelli, D., Sundt, T. M., et al. (2005). Irrigated radiofrequency ablation with transmurality feedback reliably produces Cox Maze lesions in vivo. Annals of Thoracic Surgery, 80, 2263–2270.

    Article  PubMed  Google Scholar 

  40. Deneke, T., Khargi, K., Muller, K.-M., Lemke, B., Mugge, A., Laczkovics, A., et al. (2005). Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation . European Heart Journal, 26, 1797–1803.

    Article  PubMed  Google Scholar 

  41. Kottkamp, H., Hindricks, G., Autschbach, R., et al. (2002). Specific linear left atrial lesions in atrial fibrillation: Intraoperative radiofrequency ablation using minimally invasive surgical techniques. Journal of the American College of Cardiology, 40(3), 475–480.

    Article  PubMed  Google Scholar 

  42. Gillinov, A. M., Pettersson, G., & Rice, T. W. (2001). Esophageal injury during radiofrequency ablation for atrial fibrillation. Journal of Thoracic and Cardiovascular Surgery, 122(6), 1239–1240.

    Article  PubMed  CAS  Google Scholar 

  43. Laczkovics, A., Khargi, K., & Deneke, T. (2003). Esophageal perforation during left atrial radiofrequency ablation. Journal of Thoracic and Cardiovascular Surgery, 126(6), 2119–2120; author reply 2120.

    Article  PubMed  Google Scholar 

  44. Demaria, R. G., Page, P., Leung, T. K., et al. (2003). Surgical radiofrequency ablation induces coronary endothelial dysfunction in porcine coronary arteries. European Journal of Cardio-thoracic Surgery, 23(3), 277–282.

    Article  PubMed  Google Scholar 

  45. Williams, M. R., Knaut, M., Berube, D., & Oz, M. C. (2002). Application of microwave energy in cardiac tissue ablation: From in vitro analyses to clinical use. Annals of Thoracic Surgery, 74(5), 1500–1505.

    Article  PubMed  Google Scholar 

  46. Gaynor, S. L., Byrd, G. D., Diodato, M. D., et al. (2006). Microwave ablation for atrial fibrillation: Dose-response curves in the cardioplegia-arrested and beating heart. Annals of Thoracic Surgery, 81(1), 72.

    Article  PubMed  Google Scholar 

  47. Pruitt, J. C., Lazzara, R. R., Dworkin, G. H., et al. (2006). Totally endoscopic ablation of lone atrial fibrillation: Initial clinical experience. Annals of Thoracic Surgery, 81(4), 1325–1330; discussion 1330–1331.

    Article  PubMed  Google Scholar 

  48. Manasse, E., Colombo, P. G., Barbone, A., et al. (2003). Clinical histopathology and ultrastructural analysis of myocardium following microwave energy ablation. European Journal of Cardio-thoracic Surgery, 23(4), 573–577.

    Article  PubMed  CAS  Google Scholar 

  49. Gaynor, S. L., Byrd, G. D., Diodato, M. D., Ishii, Y., Lee, A. M., Prasad, S. M., et al. (2005). Dose response curves for microwave ablation in the cardioplegia-arrested porcine heart. Heart Surgery Forum, 8(5), 331–336.

    Google Scholar 

  50. van Brakel, T. J., Bolotin, G., Salleng, K. J., et al. (2004). Evaluation of epicardial microwave ablation lesions: Histology versus electrophysiology. Annals of Thoracic Surgery, 78(4), 1397–1402; discussion 1397–1402.

    Article  PubMed  Google Scholar 

  51. Accord, R. E., van Suylen, R. J., van Brakel, T. J., & Maessen, J. G. (2005). Post-mortem histologic evaluation of microwave lesions after epicardial pulmonary vein isolation for atrial fibrillation. Annals of Thoracic Surgery, 80(3), 881–887.

    Article  PubMed  Google Scholar 

  52. Manasse, E., Medici, D., Ghiselli, S., et al. (2003). Left main coronary arterial lesion after microwave epicardial ablation. Annals of Thoracic Surgery, 76(1), 276–277.

    Article  PubMed  Google Scholar 

  53. Williams, M. R., Argenziano, M., & Oz, M. C. (2002). Microwave ablation for surgical treatment of atrial fibrillation. Seminars in Thoracic and Cardiovascular Surgery, 14(3), 232–237.

    PubMed  Google Scholar 

  54. Thomas, S. P., Guy, D. J., Rees, A., et al. (2001). Production of narrow but deep lesions suitable for ablation of atrial fibrillation using a saline-cooled narrow beam Nd:YAG laser catheter. Lasers in Surgery and Medicine, 28(4), 375–380.

    Article  PubMed  CAS  Google Scholar 

  55. Reddy, V. Y., Houghtaling, C., Fallon, J., et al. (2004). Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model. Pacing and Clinical Electrophysiology, 27(1), 52–57.

    Article  PubMed  Google Scholar 

  56. Williams, M. R., Garrido, M., Oz, M. C., & Argenziano, M. (2004). Alternative energy sources for surgical atrial ablation. Journal of Cardiac Surgery, 19(3), 201–206.

    Article  PubMed  Google Scholar 

  57. Bakir, I., Casselman, F. P., Brugada, P., et al. (2007). Current strategies in the surgical treatment of atrial fibrillation: Review of the literature and Onze Lieve Vrouw Clinic’s strategy. Annals of Thoracic Surgery, 83(1), 331–340.

    Article  PubMed  Google Scholar 

  58. Lee, L. A., Simon, C., Bove, E. L., et al. (2000). High intensity focused ultrasound effect on cardiac tissues: Potential for clinical application. Echocardiography, 17(6 Pt 1), 563–566.

    Article  PubMed  CAS  Google Scholar 

  59. Engel, D. J., Muratore, R., Hirata, K., et al. (2006). Myocardial lesion formation using high-intensity focused ultrasound. Journal of the American Society of Echocardiography, 19(7), 932–937.

    Article  PubMed  Google Scholar 

  60. Williams, M., Garrido, M., Kourpanidis, S., Casher, J., Barbone, A., DiGiorgi, P., et al. (2001). Epicardial atrial ablation with high intensity focused ultrasound on the beating heart. Circulation, 104(17), II409.

    Google Scholar 

  61. Ninet, J., Roques, X., Seitelberger, R., et al. (2005). Surgical ablation of atrial fibrillation with off-pump, epicardial, high-intensity focused ultrasound: Results of a multicenter trial. Journal of Thoracic and Cardiovascular Surgery, 130(3), 803–809.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph J. Damiano Jr..

Additional information

This work was supported by NIH grants 2RO1HL032257 and T32HL007776.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lall, S.C., Damiano, R.J. Surgical ablation devices for atrial fibrillation. J Interv Card Electrophysiol 20, 73–82 (2007). https://doi.org/10.1007/s10840-007-9186-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-007-9186-x

Keywords

Navigation