Skip to main content
Log in

Pulmonary vein encircling ablation alters the atrial electrophysiologic response to autonomic stimulation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Objective

Pulmonary vein encircling ablation is often effective in the treatment of atrial fibrillation (AF). The success of the procedure does not depend upon creation of continuous lines of block. Thus mechanisms by which pulmonary vein encircling can cure AF remain unclear. Stimulation of cardiac autonomic ganglia alters atrial refractoriness and potentiates AF. We hypothesized that pulmonary vein encircling alters atrial autonomic function and that these alterations account in part for prevention of AF recurrences following ablation.

Methods

Atrial effective refractory periods (ERP) and AF inducibility were quantified in ten dogs before and during central autonomic nerve stimulation. Pulmonary vein encircling ablation was then performed and electrophysiologic testing repeated. In two dogs subjected to sham procedures measurements were repeated without performance of ablation. Hearts were examined histologically.

Results

Autonomic nerve stimulation led to decreased atrial refractoriness and increased AF inducibility and duration. Each of these effects were attenuated following pulmonary vein encircling (e.g., mean ERP decreased before (−23.7 ± 1.8, p < 0.001) but not after ablation (−2.3 ± 1.9, p = 0.25); AF inducibility increased by 26% before vs. 5% after ablation). No attenuation was seen in the sham operated animals. Histologic analysis following pulmonary vein encircling demonstrated destruction of some but not all autonomic ganglia.

Conclusion

Autonomic stimulation shortens atrial refractory periods and potentiates AF. Pulmonary vein encircling ablation partially destroys atrial autonomic inputs, attenuates the refractory period shortening effect of autonomic stimulation and decreases AF inducibility. Destruction of autonomic ganglia may contribute to the anti-fibrillatory effects of pulmonary vein encircling and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., et al. (2000). Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation, 102(21), 2619–2628.

    PubMed  CAS  Google Scholar 

  2. Stabile, G., Turco, P., La Rocca, V., Nocerino, P., Stabile, E., & De Simone, A. (2003). Is pulmonary vein isolation necessary for curing atrial fibrillation? Circulation, 108(6), 657–660.

    Article  PubMed  Google Scholar 

  3. Mansour, M., Ruskin, J., & Keane, D. (2004). Efficacy and safety of segmental ostial versus circumferential extra-ostial pulmonary vein isolation for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 15(5), 532–537.

    Article  PubMed  Google Scholar 

  4. Scherlag, B. J., Yamanashi, W., Patel, U., Lazzara, R., & Jackman, W. M. (2005). Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. Journal of the American College of Cardiology, 45(11), 1878–1886.

    Article  PubMed  Google Scholar 

  5. Patterson, E., Po, S. S., Scherlag, B. J., & Lazzara, R. (2005). Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm, 2(6), 624–631.

    Article  PubMed  Google Scholar 

  6. Liu, L., & Nattel, S. (1997). Differing sympathetic and vagal effects on atrial fibrillation in dogs: Role of refractoriness heterogeneity. American Journal of Physiology, 273(2 Pt 2), H805–H816.

    PubMed  CAS  Google Scholar 

  7. Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., et al. (2004). Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation, 109(3), 327–334.

    Article  PubMed  Google Scholar 

  8. Singh, S., Johnson, P. I., Lee, R. E., Orfei, E., Lonchyna, V. A., Sullivan, H. J., et al. (1996). Topography of cardiac ganglia in the adult human heart. Journal of Thoracic and Cardiovascular Surgery, 112(4), 943–953.

    Article  PubMed  CAS  Google Scholar 

  9. Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., et al. (2005). Electrical stimulation to identify neural elements on the heart: Their role in atrial fibrillation. Journal of Interventional Cardiology and Electrophysiology, 13(Suppl 1), 37–42.

    Article  Google Scholar 

  10. Schauerte, P., Scherlag, B. J., Pitha, J., Scherlag, M. A., Reynolds, D., Lazzara, R., et al. (2000). Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation, 102(22), 2774–2780.

    PubMed  CAS  Google Scholar 

  11. Schauerte, P., Scherlag, B. J., Patterson, E., Scherlag, M. A., Matsudaria, K., Nakagawa, H., et al. (2001). Focal atrial fibrillation: Experimental evidence for a pathophysiologic role of the autonomic nervous system. Journal of Cardiovascular Electrophysiology, 12(5), 592–599.

    Article  PubMed  CAS  Google Scholar 

  12. Scherlag, B. J., Yamanashi, W. S., Schauerte, P., Scherlag, M., Sun, Y. X., Hou, Y., et al. (2002). Endovascular stimulation within the left pulmonary artery to induce slowing of heart rate and paroxysmal atrial fibrillation. Cardiovascular Research, 54(2), 470–475.

    Article  PubMed  CAS  Google Scholar 

  13. Randall, W. C., Milosavljevic, M., Wurster, R. D., Geis, G. S., & Ardell, J. L. (1986). Selective vagal innervation of the heart. Annals of Clinical and Laboratory Science, 16(3), 198–208.

    PubMed  CAS  Google Scholar 

  14. Chiou, C. W., Eble, J. N., & Zipes, D. P. (1997). Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation, 95(11), 2573–2584.

    PubMed  CAS  Google Scholar 

  15. Chevalier, P., Tabib, A., Meyronnet, D., Chalabreysse, L., Restier, L., Ludman, V., et al. (2005). Quantitative study of nerves of the human left atrium. Heart Rhythm, 2(5), 518–522.

    Article  PubMed  Google Scholar 

  16. Dimmer, C., Tavernier, R., Gjorgov, N., Van Nooten, G., Clement, D. L., & Jordaens, L. (1998). Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. American Journal of Cardiology, 82(1), 22–25.

    Article  PubMed  CAS  Google Scholar 

  17. Bertaglia, E., Zoppo, F., Bonanno, C., Pellizzari, N., Frigato, N., & Pascotto, P. (2005). Autonomic modulation of the sinus node following electrical cardioversion of persistent atrial fibrillation: Relation with early recurrence. International Journal of Cardiology, 102(2), 219–223.

    Article  PubMed  Google Scholar 

  18. Kanoupakis, E. M., Manios, E. G., Mavrakis, H. E., Kaleboubas, M. D., Parthenakis, F. I., & Vardas, P. E. (2000). Relation of autonomic modulation to recurrence of atrial fibrillation following cardioversion. American Journal of Cardiology, 86(9), 954–958.

    Article  PubMed  CAS  Google Scholar 

  19. Amar, D., Zhang, H., Miodownik, S., & Kadish, A. H. (2003). Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. Journal of the American College of Cardiology, 42(7), 1262–1268.

    Article  PubMed  Google Scholar 

  20. Platt, M. M. R., Scherlag, B. J., et al. (2004). Limiting the number and extent of radiofrequency applications to terminate atrial fibrillation and subsequently prevent its inducibility. Heart Rhythm, 1, s11.

    Google Scholar 

  21. Becker, A. E. (2004). Left atrial isthmus: Anatomic aspects relevant for linear catheter ablation procedures in humans. Journal of Cardiovascular Electrophysiology, 15(7), 809–812.

    Article  PubMed  Google Scholar 

  22. Hogh Petersen, H., Chen, X., Pietersen, A., Svendsen, J. H., & Haunso, S. (1999). Lesion dimensions during temperature-controlled radiofrequency catheter ablation of left ventricular porcine myocardium: Impact of ablation site, electrode size, and convective cooling. Circulation, 99(2), 319–325.

    PubMed  CAS  Google Scholar 

  23. Hsieh, M. H., Chiou, C. W., Wen, Z. C., Wu, C. H., Tai, C. T., Tsai, C. F., et al. (1999). Alterations of heart rate variability after radiofrequency catheter ablation of focal atrial fibrillation originating from pulmonary veins. Circulation, 100(22), 2237–2243.

    PubMed  CAS  Google Scholar 

  24. Razavi, M., Zhang, S., Yang, D., Sanders, R. A., Kar, B., Delapasse, S., et al. (2005). Effects of pulmonary vein ablation on regional atrial vagal innervation and vulnerability to atrial fibrillation in dogs. Journal of Cardiovascular Electrophysiology, 16(8), 879–884.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Salem Spector.

Additional information

Potential conflict of interest: PSS is a consultant to and receives grant support from Biosense Webster Research Support.

This study was supported by a research alliance with Medtronic Inc., Minneapolis, MN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, P.S., Noori, A.M., Hardin, N.J. et al. Pulmonary vein encircling ablation alters the atrial electrophysiologic response to autonomic stimulation. J Interv Card Electrophysiol 17, 119–125 (2006). https://doi.org/10.1007/s10840-006-9056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-006-9056-y

Keywords

Navigation