Skip to main content
Log in

Delineation of AV Conduction Pathways by Selective Surgical Transection: Effects on Antegrade and Retrograde Transmission

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Introduction: The role for transitional cells as determinants of AH and HA conduction was examined in the superfused rabbit AV junction.

Methods: Bipolar electrodes and microelectrodes were used to record antegrade A-H and retrograde H-A activation, before and after transection of the transitional cell input to the compact AV node.

Results: During pacing from the high right atrium, inferior to the coronary sinus os, beneath the fossa ovalis, or on the anterior limbus, AV Wenckebach block (WB) was mediated by identical transitional cells grouped in close apposition to the compact AV node. Paced WB cycle lengths were shorter from the high right atrium (196 ± 12 msec) and inferior to the coronary sinus os (195 ± 8 msec) versus the fossa ovalis (217 ± 9 msec) or anterior limbus (206 ± 11 msec). With His bundle pacing, retrograde HA WB (211 ± 17 msec) was observed within the N cell region within the compact AV node. After transection of posterior and superior transitional cell input to the compact AV node, the antegrade AH WB cycle length was prolonged (245 ± 18 msec), with an increased WB incidence within the NH region (compact AV node)(5% to 41%; p = 0.014). The incidence of retrograde HA WB determined within the NH region was increased (30% to 88%), with a decrease in the stimulus-fast pathway conduction time (98 ± 7 to 49 ± 6 msec; p < 0.01).

Conclusions: The data demonstrate (1) a common transitional cell population determining AH WB, independent of atrial stimulation site, and (2) a plasticity of transitional cell-compact AV node connections, with rapid AH and HA conduction favored by removal of posterior/superior AV nodal input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. His W, Jr. Embryonic heart activity and its significance for the theory of adult human heart action. Arbeiten aus der med. Klinik zu Leipzig 1983;14–49.

  2. Kent AFS. Researches on the structure and functions of the mammalian heart. J Physiol 1893;14:233.

    Google Scholar 

  3. Retzer R. Uber die muskulose verbindung zwischen vorhofund ventrikel des saugetierherzens. Archiv f. Anatomie u. Physiologie, Anatomische Abteilung 1904;1.

  4. Tawara S. Das reizleitungssytem des saugetierherzens. Eine anatomisch-histologische studie uber das atrioventrikularbundel und die purkinjeschen faden. Jena: Gustav Fischer, 1906. Translated Summa K, Shimada M. Imperial College Press, 2000.

    Google Scholar 

  5. Anderson RH, Janse MJ, van Capelle FJ, Billette J, Becker AE, Durrer D. A combined morpologic and electrophysiologic study of the atrioventricular node of the rabbit node. Circ Res 1974;35:909–922.

    PubMed  Google Scholar 

  6. Meijler FL, Janse MJ. Morphology and electrophysiology of the mammalian atrioventricular node. Physiol Rev 1988;68:608–647.

    PubMed  Google Scholar 

  7. Inoue S, Becker AE. Posterior extensions of the human compact AV node. A neglected anatomic feature of potential clinical significance. Circulation 1998;97:188–193.

    PubMed  Google Scholar 

  8. Janse MJ, Van Capelle FJL, Anderson RH, Touboul P, Billette J. Electrophysiology and structure of the atrioventricular node of the isolated rabbit heart. In Wellens HJJ, Lie KI, Janse MJ, Stenfert Kroese HE, Leiden, BV, eds. The Conduction System of the Heart: Structure, Function, and Clinical Implications. 1976, pp. 296–315.

  9. Racker DK. The atrioventricular node and input pathways: A correlated gross anatomical and histological study of the canine junctional region. Anat Rec 1989;224:336–354.

    Article  PubMed  Google Scholar 

  10. Racker DK, Kadish AH. Proximal atrioventricular bundle, atrioventricular node, and distal atrioventricular bundle are distinct anatomic structures with uniue histological characteristics and innervation. Circulation 2000;101:1049–1059.

    PubMed  Google Scholar 

  11. Mendez C, Moe GK. Demonstration of a dual A-V nodal conduction system in the isolated rabbit heart. Circ Res 1966;19:378–393.

    Google Scholar 

  12. McGuire MA, Lau KC, Johnson DC, Richards DA, Uther JB, Ross DL. Patients with two types of atrioventricular junctional (AV nodal) reentrant tachycardia. Evidence that a common pathway of nodal tissue is not present above the reentrant circuit. Circulation 1991;83:1232–1246.

    PubMed  Google Scholar 

  13. Patterson E, Scherlag BJ. Functional anatomy of AV conduction: Changing concepts in the ablation era. J Electrocardiography 2001;34:135–141.

    Article  Google Scholar 

  14. Patterson E, Scherlag BJ. Decremental conduction in the posterior and anterior AV nodal inputs. J Interven Cardiac Electrophysiol 2002;7:137–148.

    Article  Google Scholar 

  15. Patterson E, Scherlag BJ. Slow:fast and slow:slow AV nodal reentry in the rabbit resulting from longitudinal dissociation within the posterior AV nodal input. J Interven Cardiac Electrophysiol 2003;8:93–102.

    Article  Google Scholar 

  16. Janse MJ, Anderson RH, McGuire MA, Yen SY. “AV nodal” reentry; Part I: “AV nodal” reentry revisited. J Cardiovasc Electrophysiol 1993;4:561–572

    PubMed  Google Scholar 

  17. Janse MJ. Influence of the direction of the atrial wavefront on A-V nodal transmission in isolated hearts of rabbits. Circ Res 1969;25:439–449.

    PubMed  Google Scholar 

  18. Billette J. Atrioventricular nodal activation during periodic premature of th atrium. Am J Physiol 1987;252:H163–172.

    Google Scholar 

  19. Amellal F, Billette J. Effects of atrial pacing site on rate-dependent AV nodal function in rabbot hearts. Am J Physiol 1995;269:H934–H942.

    Google Scholar 

  20. Zhang Y, Bharati S, Mowry KA, Zhuang S, Tchou PJ, Mazgalev T. His electrogram alternans reveal dual-wavefront inputs into and longitudinal dissociation within the bundle of His. Circulation 2001;104:832–838.

    PubMed  Google Scholar 

  21. Zhang Y, Bharati S, Mowry KA, Mazgalev T. His electrogram alternans reveal dual atrioventricular nodal pathway conduction during atrial fibrillation. The role of slow-pathway modification. Circulation 2003;107:1059–1065.

    Article  PubMed  Google Scholar 

  22. Blanck Z, Dhala AA, Sra J, Deshpande SS, Anderson AJ, Ahktar M, Jazayeri J. Characterization of atrioventricular nodal behavior and ventricular response during atrial fibrillation before and after s selective slow-pathway ablation. Circulation 1995;91:1086–1094.

    PubMed  Google Scholar 

  23. Shen WK, Munger TM, Stanton MS, Osburn MJ. Hammill SC, Packer DL. Effects of slow pathway abltation on fast pathway function in patients with atrioventricular nodal reentrant tachycardia. J Cardiovasc Electrophysiol 1997;8:627–638.

    PubMed  Google Scholar 

  24. Jackman WM, Beckman KJ, McClelland JH, Wang X, Friday KJ, Roman CA, Moulton KP, Twidale N, Hazlitt HA, Prior MI, Oren J, Overholt ED, Lazzara R. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med 1992;327:313–318.

    PubMed  Google Scholar 

  25. Lesh MD, Gibb WJ, Epstein LM, et al. A computer model of dual AV nodal pathways: Evidence for electrotonic interactions. Comput Cardiol 1992:39–42.

  26. Strickberger SA, Morady F. Evaluation of fast pathway function: The importance of autonomic tone. J Cardiovasc Electrophysiol 1997;8:639–641.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Patterson PhD.

Additional information

Supported by a grant from the American Heart Association, Oklahoma Affiliate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, E., Scherlag, B.J. Delineation of AV Conduction Pathways by Selective Surgical Transection: Effects on Antegrade and Retrograde Transmission. J Interv Card Electrophysiol 13, 95–105 (2005). https://doi.org/10.1007/s10840-005-0273-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-005-0273-6

Keywords

Navigation