Baker, D. J. (2009). Against field interpretations of quantum field theory. British Journal for the Philosophy of Science, 60, 585–609.
Article
Google Scholar
Barrett, J. A. (2002). The nature of measurement records in relativistic quantum field theory. In M. Kuhlmann, H. Lyre, & A. Wayne (Eds.), Ontological aspects of quantum field theory (pp. 165–180). Singapore: World Scientific.
Chapter
Google Scholar
Barrett, J. A. (2014). Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48, 168–174.
Article
Google Scholar
Beck, C., Myrvold, W., Tumulka, R., & Oldofredi, A. (2014). Physical meaning of Malament’s theorem on the position operators in relativistic quantum theory. Unpublished manuscript, pp. 1–11.
Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1(3), 195–200.
Article
Google Scholar
Bell, J. S. (1975). The theory of local beables. TH 2053-CERN, pp. 1–14.
Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.
Google Scholar
Bohm, D. (1953). Comments on an article of Takabayasi concerning the formulation of quantum mechanics with classical pictures. Progress of Theoretical Physics, 9(3), 273–287.
Article
Google Scholar
Bricmont, J. (2016). Making sense of quantum mechanics. Berlin: Springer.
Book
Google Scholar
Colin, S., & Struyve, W. (2007). A Dirac sea pilot-wave model for quantum field theory. Journal of Physics A, 40(26), 7309–7341.
Article
Google Scholar
Cowan, C., & Tumulka, R. (2016). Epistemology of wave function collapse in quantum physics. The British Journal for the Philosophy of Science, 67(2), 405–434.
Article
Google Scholar
Daumer, M., Dürr, D., Goldstein, S., & Zanghì, N. (1996). Naive realism about operators. Erkenntnis, 45, 379–397.
Google Scholar
Dewdney, C., & Horton, G. (2002). Relativistically invariant extension of the de Broglie–Bohm theory of quantum mechanics. Journal of Physics A: Mathematical and General, 35, 10117–10127.
Article
Google Scholar
Dürr, D., Goldstein, S., Norsen, T., Struyve, W., & Zanghì, N. (2013). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470(2162), 20130,699.
Article
Google Scholar
Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2004). Bohmian mechanics and quantum field theory. Physical Review Letters, 93, 090,402.
Article
Google Scholar
Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2005). Bell-type quantum field theories. Journal of Physics A: Mathematical and General, 38(4), R1–R43. https://doi.org/10.1088/0305-4470/38/4/R01.
Article
Google Scholar
Dürr, D., Goldstein, S., & Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116, 959–1055.
Article
Google Scholar
Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.
Book
Google Scholar
Dürr, D., & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory. Berlin: Springer.
Google Scholar
Fraser, D. (2006). Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64, 305–344.
Article
Google Scholar
Fraser, D., & Earman, J. (2008). The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 38, 841–859.
Article
Google Scholar
Gisin, N. (2011). Impossibility of covariant deterministic nonlocal hidden variable extensions of quantum theory. Physical Review A, 83(2), 020,102(R).
Article
Google Scholar
Halvorson, H., & Clifton, R. K. (2002). No place for particles in relativistic quantum theories? Philosophy of Science, 69, 1–28.
Article
Google Scholar
Hiley, B., & Callaghan, R. E. (2010). The Clifford algebra approach to quantum mechanics B: The Dirac particle and its relation to the Bohm approach. arxiv.org/abs/1011.4033.
Horton, G., & Dewdney, C. (2001). A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. Journal of Physics A: Mathematical and General, 34(46), 9871–9878.
Article
Google Scholar
Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.
Google Scholar
Laudisa, F. (2014). Against the ‘no-go’ philosophy of quantum mechanics. European Journal for Philosophy of Science, 4, 1–17.
Article
Google Scholar
MacKinnon, E. (2008). The standard model as a philosophical challenge. Philosophy of Science, 75, 447–457.
Article
Google Scholar
Malament, D. (1996). In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1–11). Dordrecht: Kluwer.
Google Scholar
Struyve, W. (2010). Pilot-wave approaches to quantum field theory. Journal of Physics: Conference Series, 306, 012,047.
Google Scholar
von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.
Google Scholar