Power Area Density in Inverse Spectra

  • Matthias Rang
  • Johannes Grebe-Ellis


In recent years, inverse spectra were investigated with imaging optics and a quantitative description with radiometric units was suggested (Rang in Phänomenologie komplementärer Spektren, Logos, Berlin, 2015). It could be shown that inverse spectra complement each other additively to a constant intensity level. Since optical intensity in radiometric units is a power area density, it can be expected that energy densities of inverse spectra also fulfill an inversion equation and complement each other. In this contribution we report findings on a measurement of the power area density of inverse spectra for the near ultraviolet, visible and the infrared spectral range. They show the existence of corresponding spectral regions ultra-yellow and infra-cyan in the inverted spectrum and thereby present additional experimental evidence for equivalence of inverse spectra beyond the visible range.


Inverse spectra Complementary spectra Inversion in optics Spectroscopy Theory of colour 



We thank Olaf Müller for encouraging us in the above investigation, Johannes Kühl and Oliver Passon for constructive discussions, David Auerbach and Laura Liska for language proofreading and the DAMUS-DONATA e.V. for the financial support that enabled us to realize the project.


  1. Bjerke, A. (1961). Neue Beiträge zur Farbenlehre. Stuttgart: Verlag Freies Geistesleben.Google Scholar
  2. Holtsmark, T. (1970). Newton’s experimentum crucis reconsidered. American Journal of Physics, 38(10), 1229–1235.CrossRefGoogle Scholar
  3. Kirschmann, A. (1917). Das umgekehrte Spektrum und seine Komplementärverhältnisse. Physikalische Zeitschrift, 18, 195–205.Google Scholar
  4. Kirschmann, A. (1924). Das umgekehrte Spektrum und die Spektralanalyse. Zeitschrift für Instrumentenkunde, 44, 173–175.Google Scholar
  5. Müller, O. M. (2015). Mehr Licht! Goethes Streit mit Newton um die Farben. Frankfurt: Fischer.Google Scholar
  6. Rang, M. (2015). Phänomenologie komplementärer Spektren. Berlin: Logos.Google Scholar
  7. Rang, M., & Grebe-Ellis, J. (2009). Komplementäre Spektren. Experimente mit einer Spiegel-Spalt-Blende. MNU, 62(4), 227–230.Google Scholar
  8. Rang, M., Passon, O., & Grebe-Ellis, J. (2017). Optische Komplementarität Neue Experimente zur Symmetrie spektraler Phänomene. Physik-Journal, 16(3), 43–49.Google Scholar
  9. Sällström, P. (2010). Monochromatic shadow rays. In J. Grebe-Ellis (Ed.), DVD. Dürnau: Verlag der Kooperative Dürnau.Google Scholar
  10. von Goethe, J. W. (1970). Theory of colours (C. L. Eastlake, Trans.). Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Forschungsinstitut am GoetheanumDornachSwitzerland
  2. 2.Bergische Universität WuppertalWuppertalGermany

Personalised recommendations