Advertisement

Journal for General Philosophy of Science

, Volume 48, Issue 2, pp 173–194 | Cite as

Visual Metaphors in the Sciences: The Case of Epigenetic Landscape Images

  • Jan BaedkeEmail author
  • Tobias Schöttler
Article
  • 768 Downloads

Abstract

Recent philosophical analyses of the epistemic dimension of images in the sciences show a certain trend in acknowledging potential roles of these images beyond their merely decorative or pedagogical functions. We argue, however, that this new debate has yet paid little attention to a special type of pictures, we call ‘visual metaphor’, and its versatile heuristic potential in organizing data, supporting communication, and guiding research, modeling, and theory formation. Based on a case study of Conrad Hal Waddington’s epigenetic landscape images in biology, we develop a descriptive framework applicable to heuristic roles of various visual metaphors in the sciences.

Keywords

Conrad Hal Waddington Epigenetic landscape Modelling Scientific images Theory formation Visual metaphor 

Notes

Acknowledgments

The authors would like two anonymous referees and the editors of JGPS for their helpful remarks.

References

  1. Aldrich, V. C. (1968). Visual metaphor. Journal of Aesthetic Education, 2, 73–86.CrossRefGoogle Scholar
  2. Allwein, G., & Barwise, J. (1996). Logical reasoning with diagrams. New York: Oxford University Press.Google Scholar
  3. Anacker, M. (2012). Unterbestimmtheit und pragmatische Aprioris: Vom Tribunal der Erfahrung zum wissenschaftlichen Prozess. Paderborn: Mentis.Google Scholar
  4. Augier, A. (1801). Essai d’une nouvelle classification des vegetaux. Lyon: Bruyset Aine.Google Scholar
  5. Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 756–773.CrossRefGoogle Scholar
  6. Beardsley, M. C. (1958). Aesthetics. New York: Harcourt, Brace & World.Google Scholar
  7. Black, M. (1962). Metaphor. In M. Black (Ed.), Models and metaphors: Studies in language and philosophy (pp. 25–47). Ithaca/London: Cornell University Press.Google Scholar
  8. Boehm, G. (1994). Die Wiederkehr der Bilder. In G. Boehm (Ed.), Was ist ein Bild? (pp. 11–38). München: Fink.Google Scholar
  9. Boyd, R. (1993). Metaphor and theory change: What is “metaphor” a metaphor for? In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 481–532). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Bredekamp, H. (2005). Denkende Hände: Überlegungen zur Bildkunst der Naturwissenschaften. In M. Lessl & J. Mittelstraß (Eds.), Von der Wahrnehmung zur Erkenntnis. From perception to understanding (pp. 109–132). Heidelberg: Springer.CrossRefGoogle Scholar
  11. Brown, T. L. (2003). Making truth: Metaphor in science. Urbana: University of Illinois Press.Google Scholar
  12. Caianiello, S. (2009). Adaptive versus epigenetic landscape: A visual chapter in the history of evolution and development. In S. Brauckmann, C. Brandt & G. Thieffry (Eds.), Graphing genes, cells and embryos: Cultures of seeing 3D and beyond (pp. 65–81). Preprint Series 380. Berlin: Max Planck Institute for the History of Science.Google Scholar
  13. Carusi, A. (2012). Making the visual visible in philosophy of science. Spontaneous Generations, 6, 106–114.Google Scholar
  14. Cheng, P. C.-H., & Simon, H. A. (1995). Scientific discovery and creative reasoning with diagrams. In S. Smith, T. Ward, & R. Finke (Eds.), The creative cognition approach (pp. 205–228). Cambridge: MIT Press.Google Scholar
  15. Coliva, A. (2012). Human diagrammatic reasoning and seeing-as. Synthese, 186, 121–148.CrossRefGoogle Scholar
  16. Davidson, D. (1984). On the very idea of a conceptual scheme. In D. Davidson (Ed.), Inquiries into truth and interpretation (pp. 183–198). Oxford: Clarendon Press.Google Scholar
  17. Davidson, D. (1997). The emergence of thought. In D. Davidson (Ed.), Subjective, intersubjective, objective (pp. 123–134). Oxford: Clarendon Press.Google Scholar
  18. Davidson, D. (2001). Three varieties of knowledge. In D. Davidson (Ed.), Subjective, intersubjective, objective (pp. 205–220). Oxford: Clarendon Press.CrossRefGoogle Scholar
  19. Doyle, J. (2007). Picturing the clima(c)tic: Greenpeace and the representational politics of climate change communication. Science as Culture, 16, 129–150.CrossRefGoogle Scholar
  20. Edgerton, S. Y, Jr. (1985). The renaissance development of the scientific illustration. In J. W. Shirley & F. D. Hoeniger (Eds.), Science and the arts in the renaissance (pp. 168–197). Washington: Folger Shakespeare Library.Google Scholar
  21. Fagan, M. (2012). Waddington redux: Models and explanation in stem cell and systems biology. Biology and Philosophy, 27, 179–213.CrossRefGoogle Scholar
  22. Forceville, C. (1996). Pictorial metaphor in advertising. London: Routledge.CrossRefGoogle Scholar
  23. Forceville, C., & Urios-Aparisi, E. (Eds.). (2009). Multimodal metaphor. Berlin: de Gruyter.Google Scholar
  24. Gel’fand, I., & Tsetlin, M. L. (1971). Mathematical modelling of mechanisms of the central nervous system. In I. M. Gelfand, V. S. Gurfinkel, S. V. Fomin, & M. L. Tsetlin (Eds.), Models of the structural-functional organization of certain biological systems (pp. 1–22). Cambridge: MIT Press. (Russian original: 1966).Google Scholar
  25. Gel’fand, I., & Tsetlin, M. L. (1973). Mathematical simulation of the principles of the functioning of the central nervous system. In M. L. Tsetlin (Ed.), Automaton theory and modelling of biological systems (pp. 131–153). New York: Academic Press.Google Scholar
  26. Gentner, D. (1983). Structure mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.CrossRefGoogle Scholar
  27. Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59, 47–59.CrossRefGoogle Scholar
  28. Giere, R. (1996). Visual models and scientific judgement. In B. S. Baigrie (Ed.), Picturing knowledge: Historical and philosophical problems concerning the use of art in science (pp. 269–302). Toronto: University of Toronto Press.Google Scholar
  29. Gilbert, S. F. (1991). Epigenetic landscaping: Waddington’s use of cell fate bifurcation diagrams. Biology and Philosophy, 6, 135–154.CrossRefGoogle Scholar
  30. Glüer, K. (2006). Triangulation. In E. Lepore & B. C. Smith (Eds.), The Oxford handbook of philosophy of language (pp. 1006–1019). Oxford: Clarendon Press.Google Scholar
  31. Gooding, D. (2005). Visualisation, inference and explanation in the sciences. In G. Malcolm (Ed.), Multidisciplinary approaches to visual representations and interpretations (pp. 1–25). Amsterdam: Elsevier.CrossRefGoogle Scholar
  32. Goodman, N. (1976). Languages of art: An approach to a theory of symbols (2nd ed.). Indianapolis/Cambridge: Hackett Publishing Company.Google Scholar
  33. Griesemer, J. (1991a). Material models in biology. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 79–93).Google Scholar
  34. Griesemer, J. (1991b). Must scientific diagrams be eliminable? The case of path analysis. Biology and Philosophy, 6, 155–180.CrossRefGoogle Scholar
  35. Griesemer, J. (2002). Space ⇔time: Temporality and attention in iconographies of the living. In H. Schmidgen (Ed.), Experimental arcades: The materiality of time relations in life sciences, art, and technology (1830–1930) (pp. 45–57). Berlin: Max Plank Institut für Wissenschaftsgeschichte.Google Scholar
  36. Heintz, B., & Huber, J. (2001). Der verführerische Blick: Formen und Folgen wissenschaftlicher Visualisierungsstrategien. In B. Heintz & J. Huber (Eds.), Mit dem Auge denken. Strategien der Sichtbarmachung in wissenschaftlichen und virtuellen Welten (pp. 9–40). Wien: Springer.Google Scholar
  37. Hesse, M. B. (1970). Models and analogies in science (2nd ed.). Notre Dame: University of Notre Dame Press.Google Scholar
  38. Heßler, M., & Mersch, D. (2009). Bildlogik oder Was heißt visuelles Denken. In M. Heßler & D. Mersch (Eds.), Logik des Bildlichen: Zur Kritik der ikonischen Vernunft (pp. 8–62). Bielefeld: Transcript.CrossRefGoogle Scholar
  39. Hospers, J. (1946). Meaning and truth in the arts. Chapell Hill: University of North Carolina Press.Google Scholar
  40. Huang, S. (2009). Reprogramming cell fates: Reconciling rarity with robustness. BioEssays, 31, 546–560.CrossRefGoogle Scholar
  41. Jablonka, E., & Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82–96.CrossRefGoogle Scholar
  42. Jones, N., & Wolkenhauer, O. (2012). Diagrams as locality aids for explanation and model construction in cell biology. Biology and Philosophy, 27, 705–721.CrossRefGoogle Scholar
  43. Kahn, F. (1926). Das Leben des Menschen (Vol. III). Stuttgart: Franckh’sche Verlagshandlung.Google Scholar
  44. Kjørup, S. (1978). Pictorial speech acts. Erkenntnis, 12, 55–71.CrossRefGoogle Scholar
  45. Knight, D. M. (1985). Scientific theory and visual language. In A. Ellenius (Ed.), Natural sciences and the arts: Aspects of interaction from the renaissance to the 20th century (pp. 106–124). Uppsala: Almqvist & Wiksell.Google Scholar
  46. Krämer, S. (2009). Operative Bildlichkeit: Von der “Grammatologie” zu einer “Diagrammatologie”? Reflexionen über erkennendes “Sehen”. In M. Heßler & D. Mersch (Eds.), Logik des Bildlichen: Zur Kritik der ikonischen Vernunft (pp. 94–122). Bielefeld: Transcript.Google Scholar
  47. Kulvicki, J. (2010). Knowing with images: Medium and message. Philosophy of Science, 77, 295–313.CrossRefGoogle Scholar
  48. Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.Google Scholar
  49. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books.Google Scholar
  50. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.CrossRefGoogle Scholar
  51. Lessing, G. E. (1853). Laocoon: An essay on the limits of painting and poetry (E. C. Beasley, Trans.). London: Longman, Brown, Green and Longmans. (German original: 1766).Google Scholar
  52. Lewin, P. D. (1998). Embryology and the evolutionary synthesis: Waddington, development and genetics. Dissertation, Department of Philosophy, University of Leeds. http://etheses.whiterose.ac.uk/1455/1/uk_bl_ethos_494230.pdf.
  53. Lima, M. (2011). Visual complexity: Mapping patterns of information. New York: Princeton Architectural Press.Google Scholar
  54. Lopes, D. M. (1996). Understanding pictures. New York: Oxford University Press.Google Scholar
  55. Lotka, A. J. (1923). Contribution to the analysis of malaria epidemiology. Numerical part. III. American Journal of Epidemiology, 3(Suppl. 1), 55–95.CrossRefGoogle Scholar
  56. Mahony, M., & Hulme, M. (2012). The colour of risk: An exploration of the IPCC’s “burning embers” diagram. Spontaneous Generations, 6, 75–89.Google Scholar
  57. Manders, K. (2008). The Euclidean Diagram (1995). In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). New York: Oxford University Press.CrossRefGoogle Scholar
  58. McAllister, J. W. (2013). Reasoning with visual metaphors. Knowledge Engineering Review, 28, 367–379.CrossRefGoogle Scholar
  59. Mersch, D. (2006). Visuelle Argumente: Zur Rolle der Bilder in den Naturwissenschaften. In S. Maasen, T. Mayerhauser, & C. Renggli (Eds.), Bilder als Diskurse: Bilddiskurse (pp. 95–116). Weilerswist: Velbrück Wiss.Google Scholar
  60. Moxey, K. (2008). Visual studies and the iconic turn. Journal of Visual Culture, 7, 131–146.CrossRefGoogle Scholar
  61. Mumma, J. & Panza, M. (2012). Diagrams in mathematics: History and philosophy. Synthese, 186. (Special Issue).Google Scholar
  62. Needham, J. (1936). Order life. London: Cambridge University Press.Google Scholar
  63. Parnes, O. (2007). Die Topographie der Vererbung. Epigenetische Landschaften bei Waddington und Piper. In Zentrum für Literatur- und Kulturforschung (Eds.), Erbe, Erbschaft, Vererbung (pp. 26–31). Berlin: ZfL.Google Scholar
  64. Perini, L. (2005a). Explanation in two dimensions: Diagrams and biological explanation. Biology and Philosophy, 20, 257–269.CrossRefGoogle Scholar
  65. Perini, L. (2005b). The truth in pictures. Philosophy of Science, 72, 262–285.CrossRefGoogle Scholar
  66. Perini, L. (2005c). Visual representations and confirmation. Philosophy of Science, 72, 913–926.CrossRefGoogle Scholar
  67. Perini, L. (2012). Truth-bearers or truth-makers? Spontaneous Generations, 6, 142–147.Google Scholar
  68. Phillips, B. (2003). Understanding visual metaphor in advertising. In L. Scott & R. Batra (Eds.), Persuasive imagery: A consumer response perspective (pp. 297–310). Mahway: Lawrence Erlbaum.Google Scholar
  69. Pigliucci, M. (2012). Landscapes, surfaces, and morphospaces: What are they good for? In E. Svensson & R. Calsbeek (Eds.), The adaptive landscape in evolutionary biology (pp. 26–38). Oxford: Oxford University Press.Google Scholar
  70. Rudwick, M. (1976). The emergence of a visual language for geological science 1760-1840. History of Science, 14, 149–195.CrossRefGoogle Scholar
  71. Ruse, M. (1990). Are pictures really necessary? The case of Sewall Wright’s adaptive landscape. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 2, 63–77.Google Scholar
  72. Schilperoord, J., & Maes, A. (2009). Visual metaphoric conceptualization in editorial cartoons. In C. Forceville & E. Urios-Aparisi (Eds.), Multimodal metaphor (pp. 213–240). Berlin: de Gruyter.Google Scholar
  73. Schöttler, T. (2012). The triangulation of images: Pictorial competence and its pragmatic condition of possibility. Image, 15. http://www.gib.uni-tuebingen.de/image/ausgaben?function=fnArticle&showArticle=208.
  74. Shimojima, A. (1996). Operational constraints in diagrammatic reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 27–48). New York: Oxford University Press.Google Scholar
  75. Skipper, R. A. (2004). The heuristic role of Sewall Wright’s 1932 adaptive landscape diagram. Philosophy of Science, 71, 1176–1188.CrossRefGoogle Scholar
  76. Slack, J. M. W. (2002). Conrad Hal Waddington: The last renaissance biologist? Nature Reviews Genetics, 3, 889–895.CrossRefGoogle Scholar
  77. Tavory, I., Jablonka, E., & Ginsburg, S. (2012). Culture and epigenesis: A Waddingtonian view. In J. Valsiner (Ed.), Oxford handbook of culture and psychology (pp. 662–676). Oxford: Oxford University Press.Google Scholar
  78. Thelen, E., & Smith, L. B. (1998). Dynamic systems theories. In W. Damon (Ed.), Handbook of child psychology: Vol. 1 (5th ed., pp. 563–634). New York: Wiley.Google Scholar
  79. Vogel, M. (2003). Medien als Voraussetzungen für Gedanken. In S. Münker, A. Roesler & M. Sandbothe (Eds.), Medienphilosophie: Beiträge zur Klärung eines Begriffs (pp. 107–134, 213–215). Frankfurt: Fischer.Google Scholar
  80. Voss, J. (2010). Darwin’s pictures: Views of evolutionary theory, 1837–1874. New Haven: Yale University Press.Google Scholar
  81. Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan.Google Scholar
  82. Waddington, C. H. (1940). Organisers and genes. Cambridge: CUP.Google Scholar
  83. Waddington, C. H. (1953). How do cells differentiate? Scientific American, 189, 108–116.CrossRefGoogle Scholar
  84. Waddington, C. H. (1956). Principles of embryology. New York: Macmillan.Google Scholar
  85. Waddington, C. H. (1957). The strategy of the genes. London: Allen & Unwin.Google Scholar
  86. Waddington, C. H. (1970). Behind appearance: A study in the relations between painting and the natural sciences in this century. Cambridge: MIT Press.Google Scholar
  87. Waddington, C. H. (1974). A catastrophe theory of evolution. Annals of the New York Academy of Sciences, 231, 32–41.CrossRefGoogle Scholar
  88. Waddington, C. H. (1977). Tools for thought. London: Jonathan Cape Ltd.Google Scholar
  89. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.CrossRefGoogle Scholar
  90. Wollheim, R. (1980). Art and its objects (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  91. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Ed.), Proceedings of the sixth international congress on genetics (Vol. I, pp. 356–366). Ithaca: Brooklyn Botanic Garden.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Philosophy IRuhr University BochumBochumGermany
  2. 2.DFG Research Group ‘Visibility and Visual Production’University of PotsdamPotsdamGermany

Personalised recommendations