Journal for General Philosophy of Science

, Volume 46, Issue 2, pp 279–299 | Cite as

Causality, Teleology, and Thought Experiments in Biology

  • Marco BuzzoniEmail author


Thought experiments (henceforth TEs) de facto play many different roles in biology: economical, ethical, technical and so forth. This paper, however, is interested in whether there are any distinctive features of biological TEs as such. The question may be settled in the affirmative because TEs in biology have a function that is intimately connected with the epistemological and methodological status of biology. Peculiar to TEs in biology is the fact that the reflexive, typically human concept of finality may be profitably employed to discover mechanical-experimental causal relations in all living beings—with the obvious caveat that we do not hypostatise and interpret this concept as an ontological quality, since this would land one in an implicitly animistic, pre-Galilean view of nature. From a methodical point of view, the concept of finality is an essential assumption as well as a powerful heuristic tool in the practice of biology, that is, in the investigation of living beings in an intersubjectively testable and reproducible way.


Thought experiment in biology Teleology Experiment Mechanism 



This paper has greatly profited from two research stays at the Institute of Philosophy of the University of Essen-Duisburg (Germany), in January 2010 and in July 2011, supported by the Alexander von Humboldt Foundation. Previous versions of this paper were presented as talks at the University of Duisburg-Essen (“Teleologie und Kausalität in der Biologie”, January, 2010, and “Die Grenzen der ‘Evolutionären Wissenschaftstheorie’ und das Problem des wissenschaftlichen und methodologischen Status der Biologie”, July, 2011) and at the 39th annual philosophy of science conference in Dubrovnik, Croatia (April 16–20, 2012). The ensuing discussions were helpful for honing some of the theses presented in that occasion and now upheld in this paper: Dirk Hartmann, his excellent scientific staff and his graduate students, and all those who contributed to the discussion of my paper at the conference in Dubrovnik, deserve particular thanks. Thanks to Mike Stuart for helpful comments and suggestions. I am also very grateful to three anonymous referees for a number of useful criticisms and suggestions.


  1. Agazzi, E. (1969). Temi e problemi di filosofia della fisica. Milan: Manfredi.Google Scholar
  2. Agazzi, E. (1985). Commensurability, incommensurability and cumulativity in scientific knowledge. Erkenntnis, 22, 51–77.CrossRefGoogle Scholar
  3. Agutter, P. S., & Wheatley, D. N. (1999). Foundations of biology: On the problem of ‘Purpose’ in biology in relation to our acceptance of the Darwinian theory of natural selection. Foundations of Science, 4(1), 3–23.CrossRefGoogle Scholar
  4. Alessandrini, A., Gavazzo, P., Picco, C., & Facci, P. (2008). Voltage-induced morphological modifications in oocyte membranes containing exogenous K+ channels studied by electrochemical scanning force microscopy. Microscopy Research and Technique, 71, 274–278.CrossRefGoogle Scholar
  5. Allen, C., & Bekoff, M. (1995). Biological function, adaptation, and natural design. Philosophy of Science, 62, 609–622.CrossRefGoogle Scholar
  6. Allison, H. (1991). Kant’s Antinomy of Teleological Judgment. Southern Journal of Philosophy, 30(Supplement), 25–42.Google Scholar
  7. Ariew, A. (2003). Ernst Mayr’s ‘ultimate/proximate’ distinction reconsidered and reconstructed. Biology and Philosophy, 18, 553–565.CrossRefGoogle Scholar
  8. Beatty, J. (1990). Teleology and the relationship between biology and the physical sciences in the nineteenth and twentieth centuries. In F. Durham & R. D. Purrington (Eds.), Some truer method: Reflections on the heritage of Newton (pp. 113–144). New York: Columbia University Press.Google Scholar
  9. Bedau, M. (1992). Where’s the good in Teleology? Philosophy and Phenomenological Research, 52, 781–806.CrossRefGoogle Scholar
  10. Berent, E. (1979). Function attributions and functional explanations. Philosophy of Science, 46, 343–365.CrossRefGoogle Scholar
  11. Boorse, C. (1976). Wright on functions. The Philosophical Review, 85, 70–86.CrossRefGoogle Scholar
  12. Braillard, P.-A. (2010). Systems biology and the mechanistic framework. History and Philosophy of the Life Sciences, 32, 43–62.Google Scholar
  13. Burnham, T. C., & Johnson, D. D. P. (2005). The biological and evolutionary logic of human cooperation. Analyse & Kritik, 27, 113–135.Google Scholar
  14. Buzzoni, M. (1997). Erkenntnistheoretische und ontologische Probleme der theoretischen Begriffe. Journal for General Philosophy of Science, 28, 19–53.Google Scholar
  15. Buzzoni, M. (2008). Thought experiment in the natural sciences. Würzburg: Königshausen+Neumann.Google Scholar
  16. Buzzoni, M. (2012). Thought experiments from a Kantian point of view. In J. Brown et al. (Eds.), Thought experiment in science and arts (pp. 90–106). London: Routledge & Kegan Paul.Google Scholar
  17. Buzzoni, M. (2014). The agency theory of causality, anthropomorphism, and simultaneity. International Studies in the Philosophy of Science, 28(4), 375–395.Google Scholar
  18. Calcott, B. (2013). Why how and why aren’t enough: More problems with Mayr’s proximate-ultimate distinction. Biology and Philosophy, 28, 767–780.CrossRefGoogle Scholar
  19. Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72, 741–765.CrossRefGoogle Scholar
  20. Dawkins, R. (1986 [1996]). The Blind Watchmaker. Why the Evidence of Evolution Reveals a Universe without Design. Harlow: Longman (citations are from the 1996 edition, New York/London: Norton & Company).Google Scholar
  21. Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.Google Scholar
  22. Dickins, T. E., & Barton, R. A. (2013). Reciprocal Causation and the proximate-ultimate distinction. Biology and Philosophy, 28, 7447–7756.CrossRefGoogle Scholar
  23. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Gardner, A. (2013). Ultimate explanations concern the adaptive rationale for organism design. Biology and Philosophy, 28, 787–791.CrossRefGoogle Scholar
  25. Genz, H. (1999). Gedanken-experimente. Weinheim: Wiley.Google Scholar
  26. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(1), 342–353.CrossRefGoogle Scholar
  27. Glennan, S. (2010). Ephemeral mechanisms and historical explanation. Erkenntnis, 72, 251–266.CrossRefGoogle Scholar
  28. Godfrey-Smith, P. (2000). On the theoretical role of ‘Genetic Coding’. Philosophy of Science, 67, 26–44.CrossRefGoogle Scholar
  29. Haig, D. (2013). Proximate and ultimative causes: How come? And what for? Biology and Philosophy, 28, 781–786.CrossRefGoogle Scholar
  30. Hempel, C. G. (1965). The logic of functional analysis. In C. G. Hempel (Ed.), Aspects of scientific explanation and other essays (pp. 297–330). New York: Free Press.Google Scholar
  31. Hübner, K. (1985). Die Wahrheit des Mythos. München: Beck.Google Scholar
  32. Jacobs, J. (1986). Teleology and reduction in biology. Biology and Philosophy, 1, 389–399.CrossRefGoogle Scholar
  33. Janich, P. (1992). Grenzen der Naturwissenschaft. Munich: Beck.Google Scholar
  34. Janich, P. (1997). Experiment in der Biologie. Theory in Biosciences, 116(1), 33–64. Repr. in P. Janich, Kultur und Methode. Philosophie in einer wissenschaftlich geprägten Welt (pp. 330–366). Frankfurt A.M.: Suhrkamp, 2006.Google Scholar
  35. Janich, P. (1998). Was macht experimentelle Resultate empiriehaltig? Die methodisch-kulturalistische Theorie des Experiments. In M. Heidelberger & F. Steinle (Eds.), Experimental Essays—Versuche zum Experiment (pp. 93–112). Baden-Baden: Nomos.Google Scholar
  36. Kingma, E. (2010). Paracetamol, poison, and polio: Why Boorse’s account of function fails to distinguish health and disease. The British Journal for Philosophy of Science, 61, 241–264.CrossRefGoogle Scholar
  37. Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2012). More on how and why: Cause and effect in biology revisited. Biology and Philosophy,. doi: 10.1007/s10539-012-9335-1.Google Scholar
  38. Lange, R. (1999). Experimentalwissenschaft Biologie. Methodische Grundlegan und Probleme einer technischen Wissenschaft vom Lebendigen. Würzburg: Königshausen + Neumann.Google Scholar
  39. Lee, S. Y., Lee, A., Chen, J. Y., & MacKinnon, R. (2005). Structure of the KvAP voltage-dependent K1 channel and its dependence on the lipid membrane. Proceedings of the National Academy of Sciences of the United States of America, 102, 15441–15446.CrossRefGoogle Scholar
  40. Lennox, J. G. (1991). Darwinian thought experiments: A function for just-so stories. In T. Horowitz & G. J. Massey (Eds.), Thought experiments in science, and philosophy (pp. 223–245). Savage (MD): Rowman and Littlefield.Google Scholar
  41. Lennox, J. (1993). Darwin was a teleologist. Biology and Philosophy, 8, 409–422.CrossRefGoogle Scholar
  42. Lennox, J. G. (2005). Darwin’s methodological evolution. Journal of the History of Biology, 38, 85–99.CrossRefGoogle Scholar
  43. Li-Smerin, Y., & Swartz, K. J. (2001). Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels. The Journal of General Physiology, 117, 205–217.CrossRefGoogle Scholar
  44. Liz Stillwaggon, S. (2009). Synthesizing insight: Artificial life as thought experimentation in biology. Biology and Philosophy, 24, 687–701.CrossRefGoogle Scholar
  45. Lorenz, K.(1941/1942). Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für deutsche Philosophie, 15, 94–125.Google Scholar
  46. Mach, E. (1905). Erkenntnis und Irrtum. Leipzig: Barth (1926).Google Scholar
  47. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  48. Maffie, J. (1997). ‘Just-so’ stories about ‘inner cognitive Africa’: Some doubts about Sorensen‘s evolutionary epistemology of thought experiments. Biology and Philosophy, 85, 207–224.CrossRefGoogle Scholar
  49. Maund, B. (2000). Proper functions and aristotelian functions in biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 31, 155–178.CrossRefGoogle Scholar
  50. Mayr, E. (1961). Cause and effect in biology. Kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science, 134, 1501–1506.CrossRefGoogle Scholar
  51. Mayr, E. (1974). Teleological and teleonomic, a new analysis. Boston Studies in the Philosophy of Science, 14, 91–117.CrossRefGoogle Scholar
  52. Mayr, E. (1988). Toward a new philosophy of biology: Observations of an evolutionist. Cambridge: Harvard University Press.Google Scholar
  53. Mayr, E. (1994). Response to John Beatty. Biology and Philosophy, 9, 359–371.CrossRefGoogle Scholar
  54. McLaughlin, P. (1990). Kant’s critique of teleology in biological explanation. antinomy and teleology. Lampeter: Mellen Press.Google Scholar
  55. McLaughlin, P. (2001). What functions explains: Functional explanation and self-reproducing systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. McLaughlin, P. (2014). Mechanical Explanation in the ‘Critique of the Teleological Power of Judgment. In I. Goy & E.- Watkins (Eds.), Kant’s Theory of Biology. Berlin: De Gruyter.Google Scholar
  57. McShea, D. W. (2012). Upper-directed systems: A new approach to teleology in biology. Biology and Philosophy, 27, 1–22.CrossRefGoogle Scholar
  58. Medawar, P. B. (1952). An unsolved problem of biology. London: H.K. Lewis & Co.Google Scholar
  59. Millikan, R. G. (1984). Language, thought and other biological categories: New foundations for realism. Cambridge: MIT Press.Google Scholar
  60. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  61. Mitchell, S. D. (2000). Dimensions of scientific law. Philosophy of Science, 67, 242–265.CrossRefGoogle Scholar
  62. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. The British Journal for Philosophy of Science, 60, 813–841.CrossRefGoogle Scholar
  63. Nagel, E. (1961). The structure of science. London-New York: Harcourt-Brace.Google Scholar
  64. Nagel, E. (1977). Teleology revisited. Journal of Philosophy, 74, 261–301.CrossRefGoogle Scholar
  65. Neander, K. (1988). What does natural selection explain? Correction to Sober. Philosophy of Science, 55, 422–426.CrossRefGoogle Scholar
  66. Neander, K. (1991). Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58, 168–184.CrossRefGoogle Scholar
  67. Nicholson, D. J. (2012). The concept of mechanism in biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 152–163.CrossRefGoogle Scholar
  68. Norton, J. (1996). Are thought experiments just what you thought? Canadian Journal of Philosophy, 26, 333–366.Google Scholar
  69. Polanyi, M. (1958[1962]). Personal knowledge: Towards a post-critical philosophy. London: Routledge & Kegan Paul (quotations are from the 1962 revised edition).Google Scholar
  70. Psillos, S. (2004). A glimpse of the secret connexion: Harmonizing mechanisms with counterfactuals. Perspectives on Science, 12, 288–319.CrossRefGoogle Scholar
  71. Quarfood, M. (2006). Kant on biological teleology: Towards two-level interpretation. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 735–747.CrossRefGoogle Scholar
  72. Resnik, D. B. (1995). Functional language and biological discovery. Journal for General Philosophy of Science, 26, 119–134.CrossRefGoogle Scholar
  73. Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  74. Rosenberg, A. (2006). Darwinian reductionism. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  75. Russell, B. (1946). History of Western Philosophy. London: Allen & Unwin.Google Scholar
  76. Schmidt, D., Qiu-Xing, J., & MacKinnon, R. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 444(7), 775–779.CrossRefGoogle Scholar
  77. Shrader-Frechette, K. (2001). Using a thought experiment to clarify a radiobiological controversy. Synthese, 128, 319–342.CrossRefGoogle Scholar
  78. Snooks, R. J. (2006). Another scientific practice separating chemistry from physics: Thought experiments. Foundations of Chemistry, 8, 255–270.CrossRefGoogle Scholar
  79. Sorensen, R. (1992). Thought experiments. Oxford: Oxford University Press.Google Scholar
  80. Sorensen, R. (2002). Mirror imagery and biological selection. Biology and Philosophy, 17, 409–422.CrossRefGoogle Scholar
  81. Tabery, J. G. (2004). Synthesizing activities and interactions in the concept of a mechanism. Philosophy of Science, 71, 1–15.CrossRefGoogle Scholar
  82. Wang, J. M., Roh, S. H., Sunghwan, K., Lee, C. W., Jae, I. K., & Swartz, K. J. (2004). Molecular surface of tarantula toxins interacting with voltage sensors in Kv channels. Journal for General Physiology, 123, 455–467.CrossRefGoogle Scholar
  83. Watt, W. B. (2013). Causal mechanisms of evolution and the capacity for niche construction. Biology and Philosophy, 28, 757–766.CrossRefGoogle Scholar
  84. Weismann, A. (1902[1904]). Vorträge über Deszendenztheorie (2 Bände). Jena: Fischer (quotations are from the second edition, 1904).Google Scholar
  85. Wimsatt, W. C. (1972). Teleology and the logical structure of function statements. Studies in the History and Philosophy of Science, 3, 1–80.CrossRefGoogle Scholar
  86. Woodfield, A. (1976). Teleology. Cambridge: Cambridge University Press.Google Scholar
  87. Woodward, J. (2002). What Is a Mechanism? A Counterfactual Account. Philosophy of Science, 69 (Proceedings), S366–S377.Google Scholar
  88. Woodward, J. (2003). Making things happen. A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  89. Woodward, J. (2011). Functions. Philosophy of Science, 183, 409–427.Google Scholar
  90. Wright, L. (1973). Functions. Philosophical Review, 82, 139–168.CrossRefGoogle Scholar
  91. Wright, L. (1976). Teleological explanation: An etiological analysis of goals and functions. Berkeley/Los Angeles: University of California Press.Google Scholar
  92. Zanetti, V. (1993). Die Antinomie der teleologischen Urteilskraft. Kant-Studien, 83, 341–355.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Università di MarcerataMacerataItaly

Personalised recommendations