Journal for General Philosophy of Science

, Volume 43, Issue 2, pp 243–258 | Cite as

The Structural Metaphysics of Quantum Theory and General Relativity

  • Vincent Lam
  • Michael EsfeldEmail author


The paper compares ontic structural realism in quantum physics with ontic structural realism about space–time. We contend that both quantum theory and general relativity theory support a common, contentful metaphysics of ontic structural realism. After recalling the main claim of ontic structural realism and its physical support, we point out that both in the domain of quantum theory and in the domain of general relativity theory, there are objects whose essential ways of being are certain relations so that these objects do not possess an intrinsic identity. Nonetheless, the qualitative, physical nature of these relations is in the quantum case (entanglement) fundamentally different from the classical, metrical relations treated in general relativity theory.


Entanglement Hole argument Metric Modes Ontic structural realism Relations Structures Weak discernibility 



We would like to thank an anonymous referee for comments on the first version of this paper. VL is grateful to the Australian Research Council (ARC) for financial support (Discovery Early Career Researcher Award (DECRA), project DE120102308).


  1. Ainsworth, P. M. (2010). What is ontic structural realism? Studies in History and Philosophy of Modern Physics, 41, 50–57.CrossRefGoogle Scholar
  2. Bain, J. (2006). Spacetime structuralism. In D. Dieks (Ed.), Ontology of spacetime. Philosophy and foundations of physics series. Vol. 1, Amsterdam: Elsevier, pp. 37–65.Google Scholar
  3. Bartels, A. (1996). Modern essentialism and the problem of individuation of spacetime points. Erkenntnis, 45, 25–43.CrossRefGoogle Scholar
  4. Bartels, A. (2010a). Dispositionen in Raumzeit-Theorien. In C. F. Gethmann (Ed.), Lebenswelt und Wissenschaft. XXI. Deutscher Kongress für Philosophie. Kolloquien. Hamburg: Meiner, pp. 352–362.Google Scholar
  5. Bartels, A. (2010b). Dispositions, laws, and spacetime. Manuscript.Google Scholar
  6. Bartels, A. (2011). Der ontologische Status der Raumzeit in der Allgemeinen Relativitätstheorie. In: M. Esfeld (Ed.), Philosophie der Physik. Berlin: Suhrkamp, pp. 32–49.Google Scholar
  7. Bell, J. S. (1964). On the Einstein–Podolsky–Rosen-paradox. Physics, 1, 195–200.Google Scholar
  8. Bergmann, P. G., & Komar, A. (1960). Poisson brackets between locally defined observables in general relativity. Physical Review Letters, 4, 432–433.CrossRefGoogle Scholar
  9. Bohm, D. (1951). Quantum theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  10. Butterfield, J. N. (2006). Against pointillisme about geometry. In F. Stadler & M. Stöltzner (Eds.), Time and history. Proceedings of the 28th Ludwig Wittgenstein symposium. Frankfurt (Main): Ontos, pp. 181–222.Google Scholar
  11. Cao, Tian. Yu. (2003). Can we dissolve physical entities into mathematical structure? Synthese, 136, 57–71.CrossRefGoogle Scholar
  12. Clifton, R. K., & Halvorson, H. (2001). Entanglement and open systems in algebraic quantum field theory. Studies in History and Philosophy of Modern Physics, 32, 1–31.CrossRefGoogle Scholar
  13. Dorato, M. (2000). Substantivalism, relationism, and structural spacetime realism. Foundations of Physics, 30, 1605–1628.CrossRefGoogle Scholar
  14. Dorato, M. (2008). Is structural spacetime realism relationism in disguise? The supererogatory nature of the substantivalism/relationism debate. In D. Dieks (Ed.), The ontology of spacetime II (pp. 17–37). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Ehlers, J. (1973). Survey of general relativity theory. In W. Israel (Ed.), Relativity, astrophysics and cosmology (pp. 1–125). Dordrecht: Reidel.CrossRefGoogle Scholar
  16. Einstein, A. (1948). Quanten–Mechanik und Wirklichkeit. Dialectica, 2, 320–324.CrossRefGoogle Scholar
  17. Esfeld, M. (2001). Holism in philosophy of mind and philosophy of physics. Dordrecht: Kluwer.CrossRefGoogle Scholar
  18. Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Modern Physics, 35, 601–617.CrossRefGoogle Scholar
  19. Esfeld, M., & Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.CrossRefGoogle Scholar
  20. Esfeld, M., & Lam, V. (2011). Ontic structural realism as a metaphysics of objects. In: A. Bokulich & P. Bokulich (Eds.), Scientific structuralism. Dordrecht: Springer, pp. 143–159.Google Scholar
  21. Esfeld, M., & Sachse, C. (2010). Kausale Strukturen. Einheit und Vielfalt in der Natur und den Naturwissenschaften. Berlin: Suhrkamp. English version: Conservative reductionism New York: Routledge 2011.Google Scholar
  22. French, S. (2010). The interdependence of structure, objects and dependence. Forthcoming in Synthese.Google Scholar
  23. French, S., & Ladyman, J. (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136, 31–56.CrossRefGoogle Scholar
  24. French, S., & Ladyman, J. (2011). In defence of ontic structural realism. In: A. Bokulich & P. Bokulich (Eds.), Scientific structuralism. Dordrecht: Springer, pp. 25–42.Google Scholar
  25. French, S., & Redhead, Michael. L. G. (1988). Quantum physics and the identity of indiscernibles. British Journal for the Philosophy of Science, 39, 233–246.CrossRefGoogle Scholar
  26. Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.CrossRefGoogle Scholar
  27. Haag, R. (1992). Local quantum physics. Berlin: Springer.CrossRefGoogle Scholar
  28. Healey, R. A. (1991). Holism and nonseparability. Journal of Philosophy, 88, 393–421.CrossRefGoogle Scholar
  29. Heil, J. (2003). From an ontological point of view. Oxford: Oxford University Press.CrossRefGoogle Scholar
  30. Hoefer, C. (2000). Energy conservation in GTR. Studies in History and Philosophy of Modern Physics, 31, 187–199.CrossRefGoogle Scholar
  31. Howard, D. (1985). Einstein on locality and separability. Studies in History and Philosophy of Science, 16, 171–201.CrossRefGoogle Scholar
  32. Jarrett, J. P. (1984). On the physical significance of the locality conditions in the Bell arguments. Noûs, 18, 569–589.CrossRefGoogle Scholar
  33. Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Modern Science, 29, 409–424.CrossRefGoogle Scholar
  34. Ladyman, J. (2007). On the identity and diversity of objects in a structure. Proceedings of the aristotelian society. Supplementary Volume 81, 1–22.Google Scholar
  35. Ladyman, J., & Bigaj, T. F. (2010). The principle of the identity of indiscernibles and quantum mechanics. Philosophy of Science, 77, 117–136.CrossRefGoogle Scholar
  36. Ladyman, J., Ross, D., Spurrett, D., & Collier, J. (2007). Every thing must go. Metaphysics naturalised. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Lam, V. (2011a). The entanglement structure of quantum field systems. Manuscript.Google Scholar
  38. Lam, V. (2011b). Gravitational and non-gravitational energy: The need for background structures. Philosophy of Science, 78, 1012–1024.Google Scholar
  39. Malament, D. B. (2006). Classical relativity theory. In J. N. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics. Part A. Amsterdam: Elsevier, pp. 229–275.Google Scholar
  40. Maudlin, T. (1988). The essence of space–time. In A. Fine & J. Leplin (Eds.), Proceedings of the 1988 biennial meeting of the philosophy of science association, vol. 2. East Lansing: Philosophy of Science Association, pp. 82–91.Google Scholar
  41. Muller, F. A. (2011). How to defeat Wüthrich’s abysmal embarrassment argument against space-time structuralism. Philosophy of Science, 78, 1046–1057.Google Scholar
  42. Muller, F. A., & Saunders, S. (2008). Discerning fermions. British Journal for the Philosophy of Science, 59, 499–548.CrossRefGoogle Scholar
  43. Muller, F. A., & Seevinck, M. (2009). Discerning elementary particles. Philosophy of Science, 76, 179–200.CrossRefGoogle Scholar
  44. Norton, J. (1988). The hole argument. In A. Fine & J. Leplin (Eds.), Proceedings of the 1988 biennial meeting of the philosophy of science association. Vol. 2. East Lansing: Philosophy of Science Association, pp. 56–64.Google Scholar
  45. Rickles, D., & French, S. (2006). Quantum gravity meets structuralism: Interweaving relations in the foundations of physics. In S. French, D. Rickles, & J. Saatsi (Eds.), Structural foundations of quantum gravity (pp. 1–39). Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. Rovelli, C. (2007). Quantum gravity. In J. N. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science. Philosophy of physics. Part B. Amsterdam: Elsevier, pp. 1287–1329.Google Scholar
  47. Ruetsche, L. (2004). Intrinsically mixed states: An appreciation. Studies in History and Philosophy of Modern Physics, 35, 221–239.CrossRefGoogle Scholar
  48. Rynasiewicz, R. (1996). Absolute versus relational space-time: An outmoded debate? Journal of Philosophy, 93, 279–306.CrossRefGoogle Scholar
  49. Schrödinger, E. (1935a). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, pp. 807–812, 823–828, 844–849.Google Scholar
  50. Schrödinger, E. (1935b). Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society, 31, 555–563.CrossRefGoogle Scholar
  51. Shimony, A. (1993). Search for a naturalistic world view. vol. 2: Natural science and metaphysics. Cambridge: Cambridge University Press.Google Scholar
  52. Strawson, G. (2008). The identity of the categorical and the dispositional. Analysis, 68, 271–282.CrossRefGoogle Scholar
  53. Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37, 71–81.Google Scholar
  54. Wallace, D. (2006). In defence of naiveté: The conceptual status of Lagrangian quantum field theory. Synthese, 151, 33–80.CrossRefGoogle Scholar
  55. Worrall, J. (1989). Structural realism: The best of two worlds? Dialectica, 43, 99–124.CrossRefGoogle Scholar
  56. Wüthrich, C. (2009). Challenging the spacetime structuralist. Philosophy of Science, 76, 1039–1051.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of History, Philosophy, Religion and ClassicsUniversity of QueenslandBrisbaneAustralia
  2. 2.Section de PhilosophieUniversité de LausanneLausanneSwitzerland

Personalised recommendations