Journal for General Philosophy of Science

, Volume 43, Issue 2, pp 215–222 | Cite as

Are the Laws of Quantum Logic Laws of Nature?

Article

Abstract

The main goal of quantum logic is the bottom-up reconstruction of quantum mechanics in Hilbert space. Here we discuss the question whether quantum logic is an empirical structure or a priori valid. There are good reasons for both possibilities. First, with respect to the possibility of a rational reconstruction of quantum mechanics, quantum logic follows a priori from quantum ontology and can thus not be considered as a law of nature. Second, since quantum logic allows for a reconstruction of quantum mechanics, self-referential consistency requires that the empirical content of quantum mechanics must be compatible with the presupposed quantum ontology. Hence, quantum ontology contains empirical components that are also contained in quantum logic. Consequently, in this sense quantum logic is also a law of nature.

Keywords

Bottom-up reconstruction Quantum logic Quantum ontology Self-consistency 

References

  1. Armstrong, D. (1983). What is a law of nature? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.CrossRefGoogle Scholar
  3. Busch, P., Grabowski, M., & Lahti, P. (1995). Operational quantum physics. Berlin: Springer.Google Scholar
  4. Curry, H. B. (1952). Lecons de Logique Algébrique. Paris: Gauthier–Villars.Google Scholar
  5. Feyerabend, P. K. (1965). „Bemerkungen zur Verwendung nicht-klassischer Logiken in der Quantentheorie“. In Veröffentlichungen des internationalen Forschungszentrums für Grundlagen der Wissenschaften in Salzburg (pp. 351–359). Band 1, hrsg. Paul Weingartner, Wien.Google Scholar
  6. Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.Google Scholar
  7. Kant, I. (1998). The critique of pure reason (P. Guyer & A. Wood, Trans.). Cambridge: Cambridge University Press.Google Scholar
  8. Leibniz, G. W. (1686) „Discours de Métaphysique“, GP IV.Google Scholar
  9. Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Heidelberg: Springer.Google Scholar
  10. Mittelstaedt, P. (1978). Quantum logic. Dordrecht: D. Reidel Publ. Co.CrossRefGoogle Scholar
  11. Mittelstaedt, P. (2003). Does quantum physics require a new logic. In P. Weingartner (Ed.), Alternative logics. Berlin: Springer.Google Scholar
  12. Mittelstaedt, P. (2008) Über eine rationale Rekonstruktion der Quantenmechanik. In Bernhard, P., & Peckhaus, V. (Hrsg.), Methodisches Denken im Kontext (pp. 303–314). Mentis, Paderborn.Google Scholar
  13. Mittelstaedt, P. (2011). Rational reconstructions of modern physics. Heidelberg: Springer.CrossRefGoogle Scholar
  14. Mittelstaedt, P., & Weingartner, P. (2004). Laws of nature, Chap. 12. Heidelberg: Springer.Google Scholar
  15. Newton, I. (1729). The mathematical principles of natural philosphy. Scholium.Google Scholar
  16. Putnam, H. (1969). Is logic empirical? In M. Wartofsky & R. Cohen (Eds.), Boston studies in the philosophy of science (Vol. 5). New York: Humanities Press.CrossRefGoogle Scholar
  17. Stachow, E. W. (1976). Completeness of quantum logic. Journal of Philosophical Logic, 5, 237–280.CrossRefGoogle Scholar
  18. Stachow, E. W. (1980). Logical foundation of quantum mechanics. International Journal of Theoretical Physics, 19, 251–304.CrossRefGoogle Scholar
  19. Stachow, E. W. (1984). Structures of a quantum language for individual systems. In P. Mittelstadt & E.-W. Stachow (Eds.), Recent developments in quantum logic. Mannheim: BI-Wissenschaftsverlag.Google Scholar
  20. Stachow, E.-W. (2003). Experimental approach to quantum-logical connectives. In P. Weingartner (Ed.), Alternative logics. Berlin: Springer.Google Scholar
  21. Stegmüller, W. (1970). Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie, Vol. 2, Theorie und Erfahrung. Berlin: Springer.Google Scholar
  22. Van Fraassen, B. (1989). Laws and symmetries. Oxford: Oxford University Press.CrossRefGoogle Scholar
  23. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität zu KölnCologneGermany

Personalised recommendations