Journal for General Philosophy of Science

, Volume 43, Issue 1, pp 45–65

Realism and Objectivism in Quantum Mechanics

Article

Abstract

The present study attempts to provide a consistent and coherent account of what the world could be like, given the conceptual framework and results of contemporary quantum theory. It is suggested that standard quantum mechanics can, and indeed should, be understood as a realist theory within its domain of application. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional philosophical presuppositions. It is argued, in this direction, that the conceptualization of the nature of reality, as arising out of our most basic physical theory, calls for a kind of contextual realism. Within the domain of quantum mechanics, knowledge of ‘reality in itself’, ‘the real such as it truly is’ independent of the way it is contextualized, is impossible in principle. In this connection, the meaning of objectivity in quantum mechanics is analyzed, whilst the important question concerning the nature of quantum objects is explored.

Keywords

Classical physical ontology Quantum entanglement Nonseparability Contextuality Quantum object Objectivity Realism 

References

  1. Aspect, A., Grainger, G., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49, 1804–1807.CrossRefGoogle Scholar
  2. Auletta, G. (2001). Foundations and interpretation of quantum mechanics. Singapore: World Scientific.Google Scholar
  3. Bachelard, G. (1938/1980). La formation de l’ esprit scientifique. Paris: J. Vrin.Google Scholar
  4. Blank, J., Exner, P., & Havlicek, M. (1994). Hilbert space operators in quantum physics. New York: American Institute of Physics.Google Scholar
  5. Bohm, D., & Hiley, B. (1993). The undivided universe: An ontological interpretation of quantum theory. London: Routledge.Google Scholar
  6. Bohr, N. (1963). Essays 1958–1962 on atomic physics and human knowledge. New York: Wiley.Google Scholar
  7. Boyd, R. (1983/1992). On the current status of scientific realism. In R. Boyd, P. Gasper & J. D. Trout (Eds.), The philosophy of science, (3rd ed.) (pp. 195–222). Massachusetts: The MIT Press.Google Scholar
  8. Boyd, R. (2002). Scientific realism. In The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/scientificrealism/.
  9. Burri, A, (1994). Interview with Hilary Putnam. In Hilary Putnam (pp. 170–189). Frankfurt: Campus.Google Scholar
  10. Butterfield, J. (1989). A space-time approach to the Bell inequality. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 114–144). Notre Dame: University of Notre Dame Press.Google Scholar
  11. Cabello, A., Estebaranz, J. M., & Garsia-Alcaine, G. (1996). Bell-Kochen-Specker theorem: A proof with 18 vectors. Physics Letters A, 212, 183–187.CrossRefGoogle Scholar
  12. Cassirer, E. (1936/1956). Determinism and indeterminism in modern physics. New Haven & London: Yale University Press.Google Scholar
  13. d’Espagnat, B. (2006). On physics and philosophy. Princeton, NJ: Princeton University Press.Google Scholar
  14. Dalla Chiara, M., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory. Dordrecht: Kluwer.Google Scholar
  15. Einstein, A. (1948/1971). Quantum mechanics and reality. In M. Born (Ed.), The Born-Einstein letters (pp. 168–173). London: Macmillan.Google Scholar
  16. Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Studies in the History and Philosophy of Modern Physics, 35, 601–617.CrossRefGoogle Scholar
  17. Fine, A. (1996). The Shaky game: Einstein, realism and the quantum theory (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  18. Fock, V. (1957). On the interpretation of quantum mechanics. Czechoslovak Journal of Physics, 7, 643–656.CrossRefGoogle Scholar
  19. French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. French, S., & Ladyman, J. (2003). Remodeling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136, 31–56.CrossRefGoogle Scholar
  21. Gisin, N. (1991). Bell’s inequality holds for all non-product states. Physics Letters A, 154, 201–202.CrossRefGoogle Scholar
  22. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198 (transl.: On formally undecidable propositions of Principia Mathematica and related systems, New York: Basic Books (1962)).Google Scholar
  23. Greenberger, D. (2009). GHZ (Greenberger-Horne-Zeilinger) theorem and GHZ states. In D. Greenberger, K. Hentschel, & F. Weinert (Eds.), Compendium of quantum physics (pp. 258–263). Berlin: Springer.CrossRefGoogle Scholar
  24. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C., Žukowski, M., Aspelmeyer, M., et al. (2007). An experimental test of non-local realism. Nature, 446, 871–875.CrossRefGoogle Scholar
  25. Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., & Rauch, H. (2006). Quantum contextuality in a single-neutron optical experiment. Physical Review Letters, 97, 230401.CrossRefGoogle Scholar
  26. Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.Google Scholar
  27. Hofer-Szabó, G., & Rédei, M. (2004). Reichenbachian common cause systems. International Journal of Theoretical Physics, 43, 1819–1826.CrossRefGoogle Scholar
  28. Howard, D. (1989). Holism, separability and the metaphysical implications of the Bell experiments. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 224–253). Notre Dame: University of Notre Dame Press.Google Scholar
  29. Karakostas, V. (2004). Forms of quantum nonseparability and related philosophical consequences. Journal for General Philosophy of Science, 35, 283–312.CrossRefGoogle Scholar
  30. Karakostas, V. (2007). Nonseparability, potentiality and the context-dependence of quantum objects. Journal for General Philosophy of Science, 38, 279–297.CrossRefGoogle Scholar
  31. Karakostas, V. (2009a). Humean supervenience in the light of contemporary science. Metaphysica, 10, 1–26.CrossRefGoogle Scholar
  32. Karakostas, V. (2009b). From atomism to holism: The primacy of non-supervenient relations. NeuroQuantology, 7, 635–656 (invited article).Google Scholar
  33. Karakostas, V., & Dickson, M. (1995). Decoherence in unorthodox formulations of quantum mechanics. Synthese, 102, 61–97.CrossRefGoogle Scholar
  34. Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., et al. (2009). State-independent experimental test of quantum contextuality. Nature, 460, 494–497.CrossRefGoogle Scholar
  35. Kochen, S., & Specker, E. (1967). The Problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.Google Scholar
  36. Landsman, N. (1995). Observation and superselection in quantum mechanics. Studies in the History and Philosophy of Modern Physics, 26, 45–73.CrossRefGoogle Scholar
  37. Margenau, H. (1950). The nature of physical reality. New York: McGraw Hill.Google Scholar
  38. Mermin, N. D. (1995). Limits to quantum mechanics as a source of magic tricks: Retrodiction and the Bell-Kochen-Specker theorem. Physical Review Letters, 74, 831–834.CrossRefGoogle Scholar
  39. Mernin, N. D. (1998). What is quantum mechanics trying to tell us? American Journal of Physics, 66, 753–767.CrossRefGoogle Scholar
  40. Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.Google Scholar
  41. Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information, (10th Anniversary edition). Cambridge: Cambridge University Press.Google Scholar
  42. Popescu, S., & Rohrlich, D. (1992). Which states violate Bell’s inequality maximally? Physics Letters A, 169, 411–414.CrossRefGoogle Scholar
  43. Popper, K. R. (1990). A world of propensities. Bristol: Thoemmes.Google Scholar
  44. Primas, H. (1993). The Cartesian cut, the Heisenberg cut, and disentangled observers. In K. V. Laurikainen & C. Montonen (Eds.), Symposia on the foundations of modern physics (pp. 245–269). Singapore: World Scientific.Google Scholar
  45. Primas, H. (2007). Non-Boolean descriptions for mind-matter problems. Mind & Matter, 5, 7–44.Google Scholar
  46. Psillos, S. (2000). The present state of the scientific realism debate. British Journal for the Philosophy of Science, 51, 705–728.CrossRefGoogle Scholar
  47. Putnam, H. (1987). The many faces of realism. La Salle: Open Court Press.Google Scholar
  48. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.CrossRefGoogle Scholar
  49. Scheibe, E. (1973). The logical analysis of quantum mechanics. Oxford: Pergamon Press.Google Scholar
  50. Schrödinger, E. (1935/1983). The present situation in quantum mechanics. Naturwissenschaften, 22, 807–812 (823–828, 844–849). Reprinted in J. Wheeler & W. Zurek (Eds.), Quantum theory and measurement (pp. 152–167). Princeton: Princeton University Press.Google Scholar
  51. Shimony, A. (1993). Search for a naturalistic world view, Vol. 2, natural science and metaphysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Tittel, W., Brendel, J., Zbinden, H., & Gisin, N. (1998). Violation of Bell inequalities by photons more than 10 km apart. Physical Review Letters, 81, 3563–3566.CrossRefGoogle Scholar
  53. Van Fraassen, B. C. (1989). The charybdis of realism: Epistemological implications of Bell’s inequality. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 97–113). Notre Dame: University of Notre Dame Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Philosophy and History of ScienceUniversity of AthensAthensGreece

Personalised recommendations