Skip to main content
Log in

Saving Mach’s View on Atoms

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

According to a common belief concerning the Mach-Boltzmann debate on atoms, the new experiments performed in microphysics at the turn of the 19th and 20th centuries confirmed Boltzmann’s atomic hypothesis and disproved Mach’s anti-atomic view. This paper intends to show that this belief is partially unjustified. Mach’s view on atoms consists in fact of different kinds of arguments. While the new experiments in microphysics refute indeed his scientific arguments against the atomic hypothesis, his epistemological arguments are unaffected. In this regard, Mach’s epistemological approach remains relevant for today’s discussion on the status of the notion of atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For simplicity, let us disregard what happened in the domain of chemistry.

  2. On the history of this theory, see Brush (1976).

  3. Concerning these experiments with scanning tunnelling and atomic force microscopes, see for instance Pullman (1995), Chap. XIX, Sect. 6.

  4. Boltzmann was succeeding Mach at the professorship of natural philosophy.

  5. In this paper, the term “phenomenon” will be assumed to refer to an event or a process perceptible by the senses.

  6. Bradley (1971, Sect. 7.10.3) emphasises that Mach assigned to these two kinds of objects (tables and atoms) the same ontological status.

  7. Most often, Mach made use of the word “element” instead of “sensation”. This was to stress the fact that one should speak of “sensations” only in a specific case: “These elements depend both on external and internal circumstances; when the latter are involved, and only then, we may call these elements sensations” (1976 [1905], p. 6). These “internal circumstances” refer to the elements K, L, M… belonging to the complex of elements called “body”. It is only if the elements noted A, B, C… are considered in their relation of “functional dependency” with elements K, L, M…, that the elements A, B, C… are called “sensations” (see Mach 1996 [1900], p. 16; 1992 [1910], pp. 118–119).

  8. In this regard, Mach can be viewed as a “constructivist”.

  9. On this point, Mach was influenced by his readings of Kant who supported that objective knowledge of the things in themselves is impossible since they are outside the scope of any possible experience. According to Mach, however, Kant should have been more radical by rejecting the very notion of a thing in itself and restrain his epistemology to the phenomena (see for instance 1996 [1900], p. 30n). For a discussion of this point, see Lahbib (2003, pp. 14–15).

  10. In this regard, Mach can also be viewed as a “phenomenalist”.

  11. Recall that Mach was first of all an “empiricist”.

  12. Mach assumed that “sensations” are the most fundamental elements of our experience. Note nonetheless that he considered this idea as a tentative working hypothesis. He did not rule out the possibility that the analysis of the sensations will be developed further in the future (see e.g. 1996 [1900], pp. 22 and 32 or 1976 [1905], p. 6 and p. 12, note 7).

  13. Note that to describe potential phenomena amounts to anticipate these phenomena. In this respect, the aim of science in Mach’s view is not strictly descriptive but also predictive. On this point, see Cohen (1968, pp. 142–144).

  14. See also Ghins (2003).

  15. For a comparison of these authors, see Brenner (1998–1999) and Sebestik (1998–1999).

  16. On this point, see also Ghins (2003, pp. 12–14).

  17. Because of his hostility against metaphysics, Mach is also viewed as a “positivist”.

  18. On this point, see Ghins (2003, p. 10).

  19. This number is defined today as the number of atoms in 12 grams of carbon (isotope 12) and is approximately equal to 6.022 × 1023.

  20. For a discussion on van Fraassen’s notion of “observability”, see Churchland and Hooker (1985).

  21. Van Fraassen doesn’t state this idea explicitly, but it appears in his writings as a tacit assumption (see 1980, pp. 15–19).

  22. At least, this is what we should conclude if we endorse van Fraassen’s view supported in 1980, pp. 10–11 and 72.

  23. According to Falkenburg’s “general observation criterion” (2006, p. 71), in the frame of the kinetic theory of gases, atoms cannot even be considered as being subject to a “generalized” observation in the sense that there is no “individual causal story […] which shows that the measured quantities [i.e. the phenomena accounted for by the kinetic theory of gases] can indeed be attributed to an individual system [i.e. in our case, to an individual atom] located in a certain spacetime region, accessible to the actual measuring device”.

  24. See for instance Hughes (1989, Chap. 3), van Fraassen (1991, Chap. 6), Bitbol (1996, Sect. 2.2) and Bächtold (2008a).

  25. On this point, see Falkenburg (2007, pp. 190–194 and 206) and Bächtold (2008b, Sect. 3.4).

  26. This is a consequence of the contextuality of quantum mechanics. See the proof of Kochen and Specker (1967), or the simpler ones of Mermin (1990) and Peres (1990).

  27. Concerning Boltzmann’s epistemology, see for instance Lindley (2001), Blackmore (1995) and Cercignani (1998).

  28. By focusing on observable magnitudes, Heisenberg followed the methodology applied by Einstein when he founded special and general relativity, while Einstein’s methodology was an explicit application of Mach’s epistemology. In this respect, Mach’s influence on Heisenberg was indirect (i.e. via Einstein). Furthermore, this influence concerned the methodology applied for the construction of physical theories, but not the interpretation of the latter. Indeed, Heisenberg denied his affiliation to Mach’s epistemology, or more generally, to positivism (see 1969, Chap. XVII).

References

  • Bächtold, M. (2008a). Interpreting quantum mechanics according to a pragmatist approach. Foundations of Physics, 38, 843–868.

    Article  Google Scholar 

  • Bächtold, M. (2008b). Are all measurement outcomes ‘classical’? Studies in History and Philosophy of Modern Physics, 39, 620–633.

    Article  Google Scholar 

  • Bächtold, M. (2009). L’interprétation de la mécanique quantique: une approche pragmatiste. Paris: Hermann.

    Google Scholar 

  • Banks, E. (2003). Ernst Mach’s world elements: A study in natural philosophy. Dordrecht: Kluwer.

    Google Scholar 

  • Bensaude-Vincent, B., & Stengers, I. (2001). Histoire de la chimie. Paris: La Découverte. (first published 1992).

    Google Scholar 

  • Bitbol, M. (1996). Mécanique quantique: une introduction philosophique. Paris: Flammarion.

    Google Scholar 

  • Blackmore, J. (1972). Ernst Mach: His work, life and influence. Berkeley, Los Angeles: University of California Press.

    Google Scholar 

  • Blackmore, J. (1985). An historical note on Ernst Mach. British Journal for the Philosophy of Science, 36, 299–305.

    Article  Google Scholar 

  • Blackmore, J. (1989). Ernst Mach leaves ‘the church of physics’. British Journal for the Philosophy of Science, 40, 519–540.

    Article  Google Scholar 

  • Blackmore, J. (1995). Ludwig Boltzmann: His later life and philosophy, 1900–1906, book two: The philosopher. Dordrecht: Kluwer.

    Google Scholar 

  • Bohr, N. (1965 [1922]). The structure of the atom. In Nobel lectures: Physics 1922–1941. Amsterdam: Elsevier.

  • Boltzmann, L. (1974 [1886–1905]). Theoretical physics and philosophical problems: Selected writings. In B. McGuinness (Eds.). Dordrecht: Reidel.

  • Bradley, J. (1971). Mach’s philosophy of science. London: The Athlone Press of the University of London.

    Google Scholar 

  • Brauner, B. (1924). Einstein and Mach. Nature, 113, 927.

    Article  Google Scholar 

  • Brenner, A. (1998–1999). Les voies du positivisme en France et en Autriche: Poincaré, Duhem et Mach. Philosophia Scientiae, 3(2), 31–42.

    Google Scholar 

  • Brush, S. G. (1968). Mach and atomism. Synthese, 18, 192–215.

    Article  Google Scholar 

  • Brush, S. G. (1976). The kind of motion we call heat: A history of the kinetic theory of gases in the 19th century. Book 1: Physics and the atomists. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Buchdahl, G. (1959). Sources of scepticism in atomic theory. British Journal for the Philosophy of Science, X, 120–134.

    Article  Google Scholar 

  • Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Cercignani, C. (1998). Ludwig Boltzmann: The man who trusted atoms. Oxford: Oxford University Press.

    Google Scholar 

  • Chalmers, R. (2005). Atomism from the 17th to the 20th Century. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy. Retrieved from http://plato.stanford.edu/archives/fall2005/entries/atomism-modern/.

  • Churchland, P., & Hooker, C. (Eds.). (1985). Images of science: Essays on realism and empiricism, with a reply from Bas C. van Fraassen. Chicago: The University Press of Chicago.

    Google Scholar 

  • Cohen, R. (1968). Ernst Mach: Physics, perception and the philosophy of science. Synthese, 18, 132–170.

    Article  Google Scholar 

  • Dugas, R. (1959). La théorie physique au sens de Boltzmann. Neuchâtel: Editions du Griffon.

    Google Scholar 

  • Duhem, P. (2007 [1906]). La théorie physique, son objet, sa structure. Paris: Vrin (first published 1906).

  • Falkenburg, B. (2007). Particle metaphysics: A critical account of subatomic reality. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Feyerabend, P. (1970). Philosophy of science: A subject with a great past. In R. H. Stuewer (Ed.), Minnesota studies in the philosophy of science, V: Historical and philosophical perspectives of science (pp. 172–183). Minneapolis: University of Minnesota.

    Google Scholar 

  • Ghins, M. (2003). Les atomes et l’espace absolu: les raisons et la nature de l’antiréalisme de Mach. Philosophia Scientiae, 7(2), 3–22.

    Google Scholar 

  • Hacking, I. (1983). Representing and intervening. Cambridge: Cambridge University Press.

    Google Scholar 

  • Heisenberg, W. (1969). Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik. München: Piper.

    Google Scholar 

  • Hiebert, E. (1970). The genesis of Mach’s early views on atomism. In R. Cohen & R. Seeger (Eds.), Boston studies in the philosophy of science, VI: Ernst Mach: Physicist and philosopher (pp. 79–106). Dordrecht: Reidel.

    Google Scholar 

  • Hughes, R. I. G. (1989). The structure and interpretation of quantum mechanics. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Kochen, S., & Specker, E. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Lahbib, O. (2003). La critique de la théorie atomiste chez Ernst Mach. L’enseignement philosophique, 53(4), 14–21.

    Google Scholar 

  • Laudan, L. (1976). The methodological foundations of Mach’s anti-atomism and their historical roots. In P. Machamer & R. Turnbull (Eds.), Motion and time, space and matter: Interrelations in the history of philosophy of science (pp. 390–417). Columbus: Ohio State University Press.

    Google Scholar 

  • Lindley, D. (2001). Boltzmann’s atom: The great debate that launched a revolution in physics. New York: The Free Press.

    Google Scholar 

  • Mach, E. (1863). Compendium der Physik für Mediciner. Wien: Braumüller.

    Google Scholar 

  • Mach, E. (1890). Some questions of psycho-physics. The Monist, 1, 393–400.

    Google Scholar 

  • Mach, E. (1911 [1872]). History and root of the principle of conservation of energy. Chicago: Open Court. (Translation from Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Prag: Calve, 1872).

  • Mach, E. (1960 [1883]). The science of mechanics: A critical and historical account of its development. La Salle: Open Court. (Translation from Die Mechanik in ihrer Entwicklung. Historish-kritisch dargestellt. Frankfurt: Minerva, 1883).

  • Mach, E. (1976 [1905]). Knowledge and error: Sketches on the psychology of enquiry. Dordrecht: Reidel. (Translation from Erkenntnis und Irrtum. Darmstadt: Wissenschaftliche Buchgesellschaft, 1905).

  • Mach, E. (1986 [1896]). Principles of the theory of heat: Historically and critically elucidated. Dordrecht: Reidel. (Translation from Die Principien der Wärmelehre. Historish-kritisch entwickelt. Leipzig: Barth, 1896).

  • Mach, E. (1992 [1910]). Sensory elements and scientific concepts. In J. Blackmore (Ed.), Boston studies in the philosophy of science, 143: Ernst mach—a deeper look: Documents and new perspectives (pp. 118–126). Dordrecht: Kluwer. (Translation of Sinnliche Elemente und naturwissenschaftliche Begriffe. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 136, 1910, 263–274).

  • Mach, E. (1996 [1886]). The analysis of sensations. London: Routledge and Thoemmes Press. (Translation from Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen. Darmstadt: Wissenschaftliche Buchgesellschaft, 1886).

  • Mermin, D. (1990). Simple unified form for the major no-hidden variables theorems. Physical Review Letters, 65, 3373–3376.

    Article  Google Scholar 

  • Meyer, S. (1950). Die Vorgeschichte der Gründung und das erste Jahrzehnt des Institutes für Radiumforschung. Sitzungsberichte der Österreichischen Akademie der Wissenschaft, 159, 1–26.

    Google Scholar 

  • Peres, A. (1990). Incompatible results of quantum measurements. Physics Letters A, 151, 107–108.

    Article  Google Scholar 

  • Peres, A. (1995). Quantum theory: Concepts and methods. Dordrecht: Kluwer.

    Google Scholar 

  • Planck, M. (1910). Zur Machschen Theorie der physikalischen Erkenntnis: Eine Erwiderung. Vierteljahrsschrift für wissenschaftliche Philosophie und Soziologie, 34(4), 497–507.

    Google Scholar 

  • Poincaré, H. (1968 [1902]). La science et l’hypothèse. Paris: Flammarion (first published 1902).

  • Psillos, S. (1999). Scientific realism: How science tracks truth. London, New York: Routledge.

    Google Scholar 

  • Pullman, B. (1995). L’atome dans l’histoire de la pensée humaine. Paris: Fayard. (English translation The atom in the history of human thought. Oxford: Oxford University Press, 2001).

  • Seaman, F. (1968). Mach’s rejection of atomism. Journal of the History of Ideas, 29, 381–393.

    Article  Google Scholar 

  • Sebestik, J. (1998–1999). Mach et Duhem: épistémologie et histoire des sciences. Philosophia Scientiae, 3(2), 121–140.

    Google Scholar 

  • Van Fraassen, B. (1980). The scientific image. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Van Fraassen, B. (1991). Quantum mechanics: An empiricist view. Oxford: Clarendon Press.

    Google Scholar 

  • Van Melsen, A. (2004 [1952]). From atomos to atom: The history of the concept atom. Mineola: Dover (first published 1952).

  • Wolters, G. (1988). Atome und Relativität: Was meinte Mach? In R. Haller & F. Stadler (Eds.), Ernst Mach: Werk und Wirkung (pp. 484–507). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bächtold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bächtold, M. Saving Mach’s View on Atoms. J Gen Philos Sci 41, 1–19 (2010). https://doi.org/10.1007/s10838-009-9109-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-009-9109-x

Keywords

Navigation