Advertisement

Journal of Electronic Testing

, Volume 34, Issue 2, pp 135–146 | Cite as

Handling Unknown with Blend of Scan and Scan Compression

  • Pralhadrao V. Shantagiri
  • Rohit Kapur
Article
  • 61 Downloads

Abstract

In scan compression, all scannable Flip-Flops are part of internal scan channels connected between Decompressor and Compressor. The capture-X (unknown values in the test response) in the Flip-Flops after capture cycle of scan synthesis, results in loss of coverage and/or pattern inflation when masking is used to block the Xs irrespective of the X-masking techniques used in scan compression. In this paper, we exploited this potential and propose a hybrid DFT (Design For Testability) architecture to achieve better compression and reduce patterns count. This is a mixture of an external scan chain and scan compression. A methodology has been put in place based on the potential of a capture-X value of occurring in Flip-Flips, to find out which Flip-Flops (scan cells) should be part of the internal scan channels (chains) between Decompressor and Compressor, and which Flip-Flops should be put outside the codec (Compressor-Decompressor) as an external scan chain. The results show the benefits of the hybrid architecture which is shown to bring significant improvement in pattern count.

Keywords

ATPG DFT Hybrid scan Scan compression X-chain X-masking 

References

  1. 1.
    Barnhart C, Brunkhorst V, Distler F, Farnsworth O, Keller B, Koenemann B (2001) OPMISR: The foundation for compressed ATPG vectors. Proc. International Test Conference, pp 748–757Google Scholar
  2. 2.
    Barnhart C et al (2002) Extending OPMISR beyond 10x scan test efficiency. IEEE Des Test Comput 19(5):65–73CrossRefGoogle Scholar
  3. 3.
    Chandra A, Kapur R (2008) Not All Xs are Bad for Scan Compression. In: Proc. Asian Test Symposium, pp 7–12Google Scholar
  4. 4.
    Chandra A, Kapur R (2008) Interval based X-masking for scan compression architectures. In: Proc. 9th International Symposium on Quality Electronic Design (ISQED), pp 821–826Google Scholar
  5. 5.
    Chandra A, Kanzawa Y, Kapur R (2009) Proactive management of X’s in scan chains for compression. In: Proc. 10th International Symposium on Quality Electronic Design (ISQED), pp 260–265Google Scholar
  6. 6.
    Chandra A, Kapur R, Kanzawa Y (2009) Scalable adaptive scan (SAS). In: Proc. Design Automation and Test in Europe Conference, pp 1476–1481Google Scholar
  7. 7.
    Chao MT, Wang S, Chakradhar ST, Cheng KT (2005) Response shaper: A novel technique to enhance unknown tolerance for output response compaction. In: Proc. IEEE/ACM International Conference on Computer-Aided Design, pp 80–87Google Scholar
  8. 8.
    Chickermane V, Foutz B, Keller B (2004) Channel masking synthesis for efficient on-chip test compression. In: Proc. International Test Conference, pp 452–461Google Scholar
  9. 9.
    Colbourn CJ, Rosa A (1999) Triple systems. Oxford University Press, OxfordzbMATHGoogle Scholar
  10. 10.
    DFT Compiler, Synopsys DFT Synthesis solution, http://www.synopsys.com/products/test/dft_compiler_ds.pdf
  11. 11.
    Gizdarski E (2008) Constructing augmented multimode compactors. In: Proc. VLSI Test Symposium, pp 29–34Google Scholar
  12. 12.
    Han Y, Xu Y, Li H, Li X (2003) Test resource partitioning based on efficient response compaction for test time and tester channels reduction. In: Proc. 12th Asian Test Symposium, pp 440–445Google Scholar
  13. 13.
    Hilscher M, Braun M, Richter M, Leininger A, Gössel M (2009) X-tolerant test data compaction with accelerated shift registers. J Electron Test 25(4–5):247–258CrossRefGoogle Scholar
  14. 14.
    Kang JH, Touba NA, Yang JS (2016) Reducing control bit overhead for X-masking/X-canceling hybrid architecture via pattern partitioning. In: Proc. Design Automation Conference, pp 1–6Google Scholar
  15. 15.
    Kapur R, Mitra S, Williams TW (2008) Historical perspective on scan compression. IEEE Des Test Comput 25(2):114–120CrossRefGoogle Scholar
  16. 16.
    Lumetta SS, Mitra S (2003) X-codes: Theory and applications of unknowable inputs. Coordinated Science Laboratory Report no. UILU-ENG-03-2217Google Scholar
  17. 17.
    McCluskey EJ, Burek D, Koenemann B, Mitra S, Patel J, Rajski J, Waicukauski J (2003) Test data compression. IEEE Des Test Comput 20(2):76–87CrossRefGoogle Scholar
  18. 18.
    Mitra S, Kim KS (2002) X-compact: An efficient response compaction technique for test cost reduction. In Proc. International Test Conference, pp 311–320Google Scholar
  19. 19.
    Mitra S, Kim KS (2004) X-Compact: An Efficient Response Compaction Scheme. IEEE Trans Comput Aided Des Integr Circuits Syst 23(3):421–432CrossRefGoogle Scholar
  20. 20.
    Mitra S, Mitzenmacher M, Lumetta SS, Patil N (2005) X-tolerant test response compaction. IEEE Des Test Comput 22(6):566–574CrossRefGoogle Scholar
  21. 21.
    Mrugalski G, Mukherjee N, Rajski J, Czysz D, Tyszer J (2009) Highly X-tolerant selective compaction of test responses. In: Proc. VLSI Test Symposium, pp 245–250Google Scholar
  22. 22.
    Naruse M, Pomeranz I, Reddy SM, Kundu S (2003) On-Chip Compression of Output Responses with Unknown Values Using LFSR Reseeding. In: Proc. International Test Conference, pp 1060–1068Google Scholar
  23. 23.
    Pomeranz I, Kundu S, Reddy SM (2002) On output response compression in the presence of unknown output values. In: Proc. 39th annual Design Automation Conference, pp 255–258Google Scholar
  24. 24.
    Rabenalt T, Goessel M, Leininger A (2011) Masking of X-values by use of a hierarchically configurable register. J Electron Test 27(1):31–41CrossRefGoogle Scholar
  25. 25.
    Rajiski J, Tyszer J, Wang C, Reddy SM (2005) Finite memory test response compactors for embedded test applications. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):622–634CrossRefGoogle Scholar
  26. 26.
    Rajski W, Rajski J (2006) Modular compactor of test responses. In: Proc. VLSI Test Symp., pp 242–251Google Scholar
  27. 27.
    Rajski J, Tyszer J (2005) Synthesis of X-tolerant convolutional compactors. In: Proc. VLSI Test symposium, pp 114–119Google Scholar
  28. 28.
    Rajski J, Tyszer J, Wang C, Reddy SM (2003) Convolutional compaction of test responses. In: Proc. International Test Conference, pp 745–754Google Scholar
  29. 29.
    Rajski J, Tyszer J, Wang C, Reddy SM (2005) Finite memory test response compactors for embedded test applications. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):622–634CrossRefGoogle Scholar
  30. 30.
    Rajski J, Tyszer J, Mrugalski G, Mukherjee N, Kassab M (2006) X-press compactor for 1000× reduction of test data. In: Proc. International Test Conference, pp 1–10Google Scholar
  31. 31.
    Ramdas A, Sinanoglu O (2012) Toggle-masking scheme for x-filtering. In: Proc. 17th IEEE European Test Symposium, pp 1–6Google Scholar
  32. 32.
    Sharma M, Cheng WT (2005) X-filter: Filtering unknowns from compacted test responses. In Proc. International Test ConferenceGoogle Scholar
  33. 33.
    Shi Y, Togawa N, Yanagisawa M, Ohtsuki T (2008) GECOM: Test data compression combined with all unknown response masking. In: Proc. 2008 Asia and South Pacific Design Automation Conference, pp 577–582Google Scholar
  34. 34.
    Tang Y, Wunderlich HJ, Vranken H, Hapke F, Wittke M, Engelke P, Polian I, Becker B (2004) X-masking during logic BIST and its impact on defect coverage. In Proc. International Test Conference, pp 442–451Google Scholar
  35. 35.
  36. 36.
    Touba NA (2007) X-canceling MISR—An X-tolerant methodology for compacting output responses with unknowns using a MISR. In: Proc. International Test Conference, pp 1–10Google Scholar
  37. 37.
    Volkerink EH, Mitra S (2005) Response compaction with any number of unknowns using a new LFSR architecture. In: Proc. 42nd annual Design Automation Conference, pp 117–122Google Scholar
  38. 38.
    Wang C, Reddy SM, Pomeranz I, Rajski J, Tyszer J (2003) On compacting test response data containing unknown values. In: Proc. 2003 IEEE/ACM International Conference on Computer-aided design, p 855Google Scholar
  39. 39.
    Wang LT, Wen X, Furukawa H, Hsu FS, Lin SH, Tsai SW, Abdel-Hafez KS, Wu S (2004) Virtual Scan: A new compressed scan technology for test cost reduction. In: Proc. International Test Conference, pp 916–925Google Scholar
  40. 40.
    Wang LT, Wu CW, Wen X (2006) VLSI test principles and architectures: design for testability. Academic Press, CambridgeGoogle Scholar
  41. 41.
    Wang LT, Wu CW, Wen X (2006) Design for testability: VLSI test principles and architectures. Morgan Kaufmann (San Francisco)Google Scholar
  42. 42.
    Wang S, Wei W, Chakradhar ST (2007) Unknown blocking scheme for low control data volume and high observability. In: Proc. Design automation and test in Europe, pp 33–38Google Scholar
  43. 43.
    Wang S, Balakrishnan KJ, Wei W (2008) X-block: an efficient LFSR reseeding-based method to block unknowns for temporal compactors. IEEE Trans Comput 57(7):978–989MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wohl P, Waicukauski JA, Williams TW (2001) Design of compactors for signature-analyzers in built-in self-test. Proc. International Test Conference, pp 54–63Google Scholar
  45. 45.
    Wohl P, Waicukauski JA, Patel S, Amin MB (2003) X-tolerant compression and application of scan-ATPG patterns in a BIST architecture. In: Proc. International Test Conference, p 727Google Scholar
  46. 46.
    Wohl P, Waicukauski JA, Patel S (2004) Scalable selector architecture for X-tolerant deterministic BIST. In: Proc. 41st Design Automation Conference, pp 934–939Google Scholar
  47. 47.
    Wohl P, Waicukauski JA, Neuveux F (2008) Increasing scan compression by using X-chains. In: Proc. International Test Conference, pp 1–10Google Scholar
  48. 48.
    Wohl P, Waicukauski JA, Neuveux F, Gizdarski E (2010) Fully X-tolerant, very high scan compression. In: Proc. Design Automation Conference, pp 362–367Google Scholar
  49. 49.
    Yang JS, Touba NA (2012) X-canceling MISR architectures for output response compaction with unknown values. IEEE Trans Comput Aided Des Integr Circuits Syst 31(9):1417–1427CrossRefGoogle Scholar
  50. 50.
    Yang JS, Chung J, Touba NA (2016) Enhancing superset X-canceling method with relaxed constraints on fault observation. IEEE Trans Comput Aided Des Integr Circuits Syst 35(2):298–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceJain UniversityBengaluruIndia
  2. 2.Research GuideJain UniversityBengaluruIndia

Personalised recommendations