Advertisement

Journal of Electronic Testing

, Volume 33, Issue 3, pp 353–364 | Cite as

A Passive Authentication System Based on Optical Variable Nano/Micro-Structures

  • Jasbir N. Patel
  • Hao Jiang
  • Bozena Kaminska
Article

Abstract

A new optical authentication and security system using optical variable nano/micro-structures (OVNs) is presented. The proposed design features a passive authentication method using a simple optical system found in common fabrication facilities. The passive authentication is obtained by insertion of an OVN image directly on a processing layer or divided between multiple layers of the fabrication process. Authentic fabrication process is validated when the proper alignment (reconstructed image, for example) at the end of the fabrication is achieved. Simple proof-of-concept devices with the OVN-based authentication system are presented along with the optical images of the resulting authentication patterns.

Keywords

Passive authentication CMOS 3D IC Optical variable devices Nanostructures 

Notes

Acknowledgments

The authors are thankful to Mitacs, Canadian Microelectronics Corporation (CMC), Canadian Foundation for Innovation (CFI), Canada Research Chair program and Natural Science and Engineering Research Council (NSERC) for their financial support to carry out this experimental work at the Simon Fraser University in Burnaby, British Columbia. We also thank Ms. Haleh Shahbazbegian for her help with silicon-based microfabrication and 4D Labs for the cleanroom facility services.

References

  1. 1.
    Abe N, Shinzaki T (2015) Vectorized fingerprint representation using Minutiae Relation Code. In 2015 International Conference on Biometrics (ICB), 408–415Google Scholar
  2. 2.
    Arabi S, Jiang H, Shahbazbegian H, Patel JN, Kaminska B (2015). Additive manufacturing of optical devices using inkjet printing on optical nanostructures. In NIP & Digital Fabrication Conference. vol. 2015, no. 1. Society for Imaging Science and Technology. 386–390Google Scholar
  3. 3.
    Chang AA, Patel JN, Cordoba C, Kaminska B, Kavanagh K (2014) Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors. In SPIE MOEMS-MEMS. International Society for Optics and Photonics. 89730 J–89730 JGoogle Scholar
  4. 4.
    Chen Q, Chitnis D, Walls K, Drysdale TD, Collins S, Cumming DR (2012) CMOS photodetectors integrated with plasmonic color filters. IEEE Photon Technol Lett 24(3):197–199CrossRefGoogle Scholar
  5. 5.
    Chuo Y, Landrock C, Omrane B, Hohertz D, Grayli SV, Kavanagh K, Kaminska B (2013) Rapid fabrication of nano-structured quartz stamps. Nanotechnology 24(5):055304CrossRefGoogle Scholar
  6. 6.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  7. 7.
    Green MA, Keevers MJ (1995) Optical properties of intrinsic silicon at 300 K. Prog Photovolt Res Appl 3(3):189–192CrossRefGoogle Scholar
  8. 8.
    Jiang H, Li T, Yang J, Mittler S, Sabarinathan J (2013) Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window. Nanotechnology 24(46):465502CrossRefGoogle Scholar
  9. 9.
    Jiang H, Qarehbaghi R, Kaminska B (2014a) Nano-media: new nano-photofabric for rapid imprinting of color images and covert data storage. In 14th IEEE International Conference on Nanotechnology, pp 608–613. doi: 10.1109/NANO.2014.6968172
  10. 10.
    Jiang H, Qarehbaghi R, Kaminska B, Najiminaini M, Carson JJ, Rezaei M (2014b) Nano-media information carrier based on pixelated nano-structures combined with an intensity control layer. U.S. Patent Application No. 14/455,369Google Scholar
  11. 11.
    Jiang H, Rezaei M, Shahbazbegian H, Arabi S, Patel JN, Kaminska B (2015) Designing nano-media: how to build a novel media surface with extraordinary optical effects and data storage at the nano scale. In 21st International Symposium of Electronic Arts (ISEA)Google Scholar
  12. 12.
    Jiang H, Alan S, Shahbazbegian H, Patel JN, Kaminska B (2016) Molding Inkjetted silver on nanostructured surfaces for high-throughput structural color printing. ACS Nano 10(11):10544–10554CrossRefGoogle Scholar
  13. 13.
    Kaminska B, Landrock CK (2012) Security document with electroactive polymer power source and nano-optical display. U.S. Patent No. 8,253,536. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  14. 14.
    Kumar K, Duan H, Hegde RS, Koh SC, Wei JN, Yang JK (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7(9):557–561CrossRefGoogle Scholar
  15. 15.
    Lee JW, Lim D, Gassend B, Suh GE, Van Dijk M, Devadas S (2004) A technique to build a secret key in integrated circuits for identification and authentication applications. In Symposium on VLSI Circuits, 2004. Digest of Technical Papers. 176–179Google Scholar
  16. 16.
    Li Y, Simeral ML, Natelson D (2016) Surface-enhanced infrared absorption of self-aligned Nanogap structures. J Phys Chem C 120(39):22558–22564CrossRefGoogle Scholar
  17. 17.
    Lv YQ, Zhou Q, Cai YC, Qu G (2014) Trusted integrated circuits: the problem and challenges. J Comput Sci Technol 29(5):918–928CrossRefGoogle Scholar
  18. 18.
    Mahmood K, Carmona PL, Shahbazmohamadi S, Pla F, Javidi B (2015) Real-time automated counterfeit integrated circuit detection using x-ray microscopy. Appl Opt 54(13):D25–D32CrossRefGoogle Scholar
  19. 19.
    Patel JN, Jiang H, Kaminska B (2016) Authentication and process control system based on optical variable nanostructures. In Mixed-Signal Testing Workshop (IMSTW), 2016 I.E. 21st International, 1–6Google Scholar
  20. 20.
    Rajendran J, Karri R, Wendt JB, Potkonjak M, McDonald N, Rose GS, Wysocki B (2015) Nano meets security: exploring nanoelectronic devices for security applications. Proc IEEE 103(5):829–849CrossRefGoogle Scholar
  21. 21.
    Rezaei M, Jiang H, Qarehbaghi R, Naghshineh M, Kaminska B (2015) Rapid production of structural color images with optical data storage capabilities. In SPIE OPTO. International Society for Optics and Photonics. 93740O-93740OGoogle Scholar
  22. 22.
    Saqib F (2014) Within-die delay variation measurement and analysis for emerging technologies using an embedded test structure. The University of New MexicoGoogle Scholar
  23. 23.
    Shahrjerdi D, Rajendran J, Garg S, Koushanfar F, Karri, R (2014) Shielding and securing integrated circuits with sensors. In 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 170–174Google Scholar
  24. 24.
    Shegai T, Chen S, Miljković VD, Zengin G, Johansson P, Käll M (2011) A bimetallic nanoantenna for directional colour routing. Nat Commun 2:481CrossRefGoogle Scholar
  25. 25.
    Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, et al. (2014). Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett, 14(7). 4023–4029Google Scholar
  26. 26.
    Topol AW, La Tulipe DC, Shi L, Frank DJ, Bernstein K, Steen SE et al (2006) Three-dimensional integrated circuits. IBM J Res Dev 50(4.5):491–506CrossRefGoogle Scholar
  27. 27.
    Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromech Syst 12(6):761–778CrossRefGoogle Scholar
  28. 28.
    Wu YKR, Hollowell AE, Zhang C, Guo LJ (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci Rep 3:1194CrossRefGoogle Scholar
  29. 29.
    Xu T, Wu YK, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59Google Scholar
  30. 30.
    Yamamoto D, Takenaka M (2015) Semiconductor integrated circuit, authentication system, and authentication method. U.S. Patent Application No. 14/593,057Google Scholar
  31. 31.
    Zheng Y (2015) Low-cost and robust countermeasures against counterfeit integrated circuits. Case Western Reserve University, Doctoral dissertationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Simon Fraser UniversityVancouverCanada

Personalised recommendations