Journal of Electronic Testing

, Volume 27, Issue 3, pp 225–240 | Cite as

Survey of Robustness Enhancement Techniques for Wireless Systems-on-a-Chip and Study of Temperature as Observable for Process Variations

  • Marvin Onabajo
  • Didac Gómez
  • Eduardo Aldrete-Vidrio
  • Josep Altet
  • Diego Mateo
  • Jose Silva-Martinez
Article

Abstract

Built-in test and on-chip calibration features are becoming essential for reliable wireless connectivity of next generation devices suffering from increasing process variations in CMOS technologies. This paper contains an overview of contemporary self-test and performance enhancement strategies for single-chip transceivers. In general, a trend has emerged to combine several techniques involving process variability monitoring, digital calibration, and tuning of analog circuits. Special attention is directed towards the investigation of temperature as an observable for process variations, given that thermal coupling through the silicon substrate has recently been demonstrated as mechanism to monitor the performances of analog circuits. Both Monte Carlo simulations and experimental results are presented in this paper to show that circuit-level specifications exhibit correlations with silicon surface temperature changes. Since temperature changes can be measured with efficient on-chip differential temperature sensors, a conceptual outline is given for the use of temperature sensors as alternative process variation monitors.

Keywords

CMOS process variation Transceiver RF built-in test Self-calibration Thermal monitoring RF thermal testing Design for manufacturability 

References

  1. 1.
    Abdallah L, Stratigopoulos HG, Kelma C, Mir S (2010) Sensors for built-in alternate RF test. In: Proc IEEE European Test Symposium (ETS), pp 49–54Google Scholar
  2. 2.
    Agarwal K, Hayes J, Nassif S (2008) Fast characterization of threshold voltage fluctuation in MOS devices. IEEE Trans Semicond Manuf 21(4):526–533CrossRefGoogle Scholar
  3. 3.
    Ahsan N, Dabrowski J, Ouacha A (2008) A self-tuning technique for optimization of dual band LNA. In: Proc European Conference on Wireless Technology (EuWiT), pp 178–181Google Scholar
  4. 4.
    Aldrete-Vidrio E, Mateo D, Altet J (2007) Differential temperature sensors fully compatible with a 0.35-μm CMOS process. IEEE Trans Components Packaging Technol 30(4):618–626CrossRefGoogle Scholar
  5. 5.
    Aldrete-Vidrio E, Mateo D, Altet J, Salhi MA, Grauby S, Dilhaire S, Onabajo M, Silva-Martinez J (2010) Strategies for built-in characterization testing and performance monitoring of analog RF circuits with temperature measurements. Meas Sci Technol 21(7):075104(10pp)CrossRefGoogle Scholar
  6. 6.
    Altet J, Rubio A, Schaub E, Dilahire S, Claeys W (2001) Thermal coupling in integrated circuits: application to thermal testing. IEEE J Solid State Circ 36(1):81–91CrossRefGoogle Scholar
  7. 7.
    Altet J, Claeys W, Dilhaire S, Rubio A (2006) Dynamic surface temperature measurements in ICs. Proc IEEE 94(8):1519–1533CrossRefGoogle Scholar
  8. 8.
    Bhattacharya S, Chatterjee A (2004) Use of embedded sensors for built-in-test RF circuits. In: Proc IEEE International Test Conference (ITC), pp 801–809Google Scholar
  9. 9.
    Bhushan M, Gattiker A, Ketchen MB, Das KK (2006) Ring oscillators for CMOS process tuning and variability control. IEEE Trans Semiconductor Manuf 19(1):10–18CrossRefGoogle Scholar
  10. 10.
    Chiang C, Kawa J (2007) Design for Manufacturability and Yield for Nano-scale CMOS. Dordrecht, Springer, pp 14–15Google Scholar
  11. 11.
    Cimino M, Lapuyade H, De Matos M, Taris T, Deval Y, Bégueret JB (2007) A robust 130 nm-CMOS built-in current sensor dedicated to RF applications. J Electron Test 23(6):593–603CrossRefGoogle Scholar
  12. 12.
    Dabrowski JJ, Ramzan RM (2010) Built-in loopback test for IC RF transceivers. IEEE Trans Very Large Scale Integration (VLSI) Systems 18(6):933–946CrossRefGoogle Scholar
  13. 13.
    Darabi H, Chiu J, Khorram S, Kim HJ, Zhou Z, Chien HM, Ibrahim B, Geronaga E, Tran LH, Rofougaran A (2005) A dual-mode 802.11b/Bluetooth radio in 0.35-μm CMOS. IEEE J Solid-State Circuits 40(3):698–706CrossRefGoogle Scholar
  14. 14.
    Das T, Gopalan A, Washburn C, Mukund PR (2005) Self-calibration of input-match in RF front-end circuitry. IEEE Trans Circ Syst II Express Briefs 52(12):821–825CrossRefGoogle Scholar
  15. 15.
    Eberle W, Tubbax J, Come B, Donnay S, De Man H, Gielen G (2002) OFDM-WLAN receiver performance improvement using digital compensation techniques. In: Proc IEEE Radio and Wireless Conference (RAWCON), pp 111–114Google Scholar
  16. 16.
    Elahi I, Muhammad K, Balsara PT (2006) I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process. IEEE J Solid State Circ 41(2):395–404CrossRefGoogle Scholar
  17. 17.
    Eliezer O, Staszewski RB, Mannath D (2010) A statistical approach for design and testing of analog circuitry in low-cost SoCs. In: Proc IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) 1–4 August, Seattle, USAGoogle Scholar
  18. 18.
    Elmala MAI, Embabi SHK (2004) Calibration of phase and gain mismatches in Weaver image-reject receiver. IEEE J Solid State Circ 39(2):283–289CrossRefGoogle Scholar
  19. 19.
    Fan X, Onabajo M, Fernandez F, Silva-Martinez J, Sánchez-Sinencio E (2008) A current injection built-in test technique for RF low-noise amplifiers. IEEE Trans Circ Syst I Regular Pap 55(7):1794–1804CrossRefGoogle Scholar
  20. 20.
    Gielen GGE (2006) Design methodologies and tools for circuit design in CMOS nanometer technologies. In: Proc 36th European Solid-State Device Research Conference, pp 21–32Google Scholar
  21. 21.
    Glas JPF (1998) Digital I/Q imbalance compensation in a low-IF receiver. In: Proc IEEE Global Telecommunications Conference (GLOBECOM), vol 3, pp 1461–1466Google Scholar
  22. 22.
    Gómez D, Mateo D, Altet J (2010) Electro-thermal coupling analysis methodology for RF circuits. In: Proc 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), pp 154–160Google Scholar
  23. 23.
    Haider A, Bhattacharya S, Srinivasan G, Chatterjee A (2005) A system-level alternate test approach for specification test of RF transceivers in loopback mode. In: Proc 18th International Conference on VLSI Design, pp 289–294Google Scholar
  24. 24.
    Hsieh YH, Hu WY, Lin SM, Chen CL, Li WK, Chen SJ, Chen DJ (2005) An auto-I/Q calibrated CMOS transceiver for 802.11g. IEEE J Solid State Circ 40(11):2187–2192CrossRefGoogle Scholar
  25. 25.
    International Roadmap for Semiconductors, Test & Test Equipment (2009) Available: http://public.itrs.net/reports.html
  26. 26.
    Jose AP, Jenkins KA, Reynolds SK (2005) On-chip spectrum analyzer for analog built-in self test. In: Proc IEEE VLSI Test Symposium, pp 131–136Google Scholar
  27. 27.
    Kaczman D, Shah M, Alam M, Rachedine M, Cashen D, Han L, Raghavan A (2009) A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2. IEEE J Solid State Circ 44(3):718–739CrossRefGoogle Scholar
  28. 28.
    Kivekas K, Parssinen A, Ryynanen J, Jussila J, Halonen K (2002) Calibration techniques of active BiCMOS mixers. IEEE J Solid State Circ 37(6):766–769CrossRefGoogle Scholar
  29. 29.
    Liao CH, Chuang HR (2003) A 5.7-GHz 0.18-μm CMOS gain-controlled differential LNA with current reuse for WLAN receiver. IEEE Microwave Wireless Compon Lett 13(12):526–528CrossRefGoogle Scholar
  30. 30.
    Mattisson S, Hagberg H, Andreani P (2008) Sensitivity degradation in a tri-band GSM BiCMOS direct-conversion receiver caused by transient substrate heating. IEEE J Solid State Circ 43(2):486–496CrossRefGoogle Scholar
  31. 31.
    Mobarak M, Onabajo M, Silva-Martinez J, Sánchez-Sinencio E (2010) Attenuation- predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE J Solid State Circ 45(2):351–367CrossRefGoogle Scholar
  32. 32.
    Montemayor R, Razavi B (2000) A self-calibrating 900-MHz CMOS image-reject receiver. In: Proc European Solid-State Circuits Conference (ESSCIRC), pp 320–323Google Scholar
  33. 33.
    Negreiros M, Carro L, Susin AA (2006) An improved RF loopback for test time reduction. In: Proc Design, Automation and Test in Europe Conference and Exhibition, pp 646–651Google Scholar
  34. 34.
    Onabajo M, Altet J, Aldrete-Vidrio E, Mateo E, Silva-Martinez J (to appear) Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensor. Accepted for publication in IEEE Trans Circuits and Systems I: Regular Papers. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5635371
  35. 35.
    Onabajo M, Silva-Martinez J, Fernandez F, Sánchez-Sinencio E (2009) An on-chip loopback block for RF transceiver built-in test. IEEE Trans Circ Syst II Express Briefs 56(6):444–448CrossRefGoogle Scholar
  36. 36.
    Rebaud B, Belleville M, Beigne E, Robert M, Maurine P, Azemard N (2009) An innovative timing slack monitor for variation tolerant circuits. In: Proc IEEE International Conference on IC Design and Technology (ICICDT), pp 215–218Google Scholar
  37. 37.
    Roberts GW, Dufort B (1999) Making complex mixed-signal telecommunication integrated circuits testable. IEEE Commun Mag June, pp 90–96Google Scholar
  38. 38.
    Ryu JY, Kim BC, Sylla I (2006) A new low-cost RF built-in self-test measurement for system-on-chip transceivers. IEEE Trans Instrum Meas 55(2):381–388CrossRefGoogle Scholar
  39. 39.
    Shi B, Chia YW (2005) “An analog mismatch calibration system for image-reject receivers,” In: Proc European Conference on Wireless Technology, pp. 225–228Google Scholar
  40. 40.
    Shin H, Park J, Abraham JA (2010) Spectral prediction for specification-based loopback test of embedded mixed-signal circuits. J Electron Test 26(1):73–86CrossRefGoogle Scholar
  41. 41.
    Srinivasan G, Chatterjee A, Taenzler F (2006) Alternate loop-back diagnostic tests for wafer-level diagnosis of modern wireless transceivers using spectral signatures. In: Proc 24th VLSI Test Symposium, pp 222–227Google Scholar
  42. 42.
    Staszewski RB, Bashir I, Eliezer O (2007) RF Built-in self test of a wireless transmitter. IEEE Trans Circ Syst II Express Briefs 54(2):186–190CrossRefGoogle Scholar
  43. 43.
    Stopjakova V, Manhaeve H, Sidiropulos M (1999) On-chip transient current monitor for testing of low-voltage CMOS IC. In: Proc Design, Automation and Test in Europe Conference and Exhibition, pp 538–542Google Scholar
  44. 44.
    Valdes-Garcia A, Hussien FAL, Silva-Martinez J, Sánchez-Sinencio E (2006) An integrated frequency response characterization system with a digital interface for analog testing. IEEE J Solid State Circ 41(10):2301–2313CrossRefGoogle Scholar
  45. 45.
    Valdes-Garcia A, Venkatasubramanian R, Silva-Martinez J, Sánchez-Sinencio E (2008) A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans Instrum Meas 57(7):1470–1477CrossRefGoogle Scholar
  46. 46.
    Vassiliou I, Vavelidis K, Georgantas T, Plevridis S, Haralabidis N, Kamoulakos G, Kapnistis C, Kavadias S, Kokolakis Y, Merakos P, Rudell JC, Yamanaka A, Bouras S, Bouras I (2003) A single-chip digitally calibrated 5.15-5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN. IEEE J Solid State Circ 38(12):2221–2231CrossRefGoogle Scholar
  47. 47.
    Wang Q, Soma M (2006) RF front-end system gain and linearity built-in test. In: Proc 24th IEEE VLSI Test Symposium, pp 228–233Google Scholar
  48. 48.
    Yin Q, Eisenstadt WR, Fox RM, Zhang T (2005) A translinear RMS detector for embedded test of RF ICs. IEEE Trans Instrum Meas 54(5):1708–1714CrossRefGoogle Scholar
  49. 49.
    Zjajo A, de Gyvez JP (2005) Evaluation of signature-based testing of RF/analog circuits. In: Proc IEEE European Test Symposium, pp 62–67Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marvin Onabajo
    • 1
  • Didac Gómez
    • 2
  • Eduardo Aldrete-Vidrio
    • 2
  • Josep Altet
    • 2
  • Diego Mateo
    • 2
  • Jose Silva-Martinez
    • 1
  1. 1.Department of Electrical & Computer Eng.Texas A&M UniversityCollege StationUSA
  2. 2.Department of Electronic EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations