Skip to main content

Advertisement

Log in

Effect of temperature on the rate of reaction of MnWO4 for drug degradation

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The growing concern of drug pollution in water bodies, particularly the presence of pharmaceutical drugs like Diclofenac (DF), has prompted the emergence of photocatalytic degradation as a promising solution, driving the need for efficient photocatalysts to mitigate potential risks to aquatic ecosystems and human health. In this study, the influence of temperature on the degradation of DF (name of the drug) using MnWO4 (manganese tungstate) as a photocatalyst is investigated. The precise co-precipitation method was used to synthesize MnWO4, which was subsequently calcined at different temperatures ranging from 500 °C to 900 °C. The physicochemical properties of synthesized materials were investigated by various analytical and spectrocopical techniques. Significantly, MnWO4 calcinated at 800 °C demonstrated exceptional photocatalytic performance, achieving a degradation rate exceeding 98% for DF under visible-light illumination. This superior activity can be attributed to factors such as excellent crystallinity, a well-defined morphology, a superior optical band gap for effective utilization of visible light, and reduced particle size compared to other MnWO4 materials. This work paves valuable insights into the temperature-dependent synthesis and properties of MnWO4 as a photocatalyst for DF degradation. The exceptional photocatalytic performance observed at 800 °C highlights the potential of MnWO4 as an efficient and environmentally friendly material for drug decomposition under visible-light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R. Ma, S. Zhang, L. Li, P. Gu, T. Wen, A. Khan et al., ACS Sustain. Chem. Eng. 7, 10 (2019)

    Google Scholar 

  2. E.A. Walters, E.M. Wewerka, J Chem Educ 52, 5 (1975)

    Article  Google Scholar 

  3. S. Rasalingam, R. Peng, R.T. Koodali, J Nanomater 1, 10 (2014)

    Google Scholar 

  4. P. Iovino, S. Chianese, M. Canzano, Prisciandaro, D. Musmarra, Water Air Soil Pollut 227, 194 (2016)

    Article  Google Scholar 

  5. J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj, C. Karuppiah, Sci Rep 6, 34149 (2016)

    Article  CAS  Google Scholar 

  6. M. Thiruppathi, P. Senthil Kumar, P. Devendran, C. Ramalingan, M. Swaminathan, E.R. Nagarajan, J Alloys Compd 735, 728 (2018)

    Article  CAS  Google Scholar 

  7. G. Leelaprakash, S. Mohan Dass, Int. J. Drug Dev. Res 3, 3 (2011)

    Google Scholar 

  8. C. Yu, J.C. Yu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 164, 1 (2009)

    Article  Google Scholar 

  9. N.A. Shad, M.M. Sajid, A.U. Haq, N. Amin, Z. Imran, H. Anwar et al., Arab. J. Sci. Eng. 44, 1 (2019)

    Article  Google Scholar 

  10. J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim et al., Cryst Eng Comm 17, 6070 (2015)

    Article  CAS  Google Scholar 

  11. Z. Li, M. Jia, B. Abraham, J.C. Blake, D. Bodine, J.T. Newberg et al., Langmuir 34, 961 (2018)

    Article  CAS  Google Scholar 

  12. M. Rahmani, T. Sedaghat, Inorg. Organomet Polym Mater 29, 220 (2019)

    Article  CAS  Google Scholar 

  13. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, R. Rajajeyaganthan, M. Arunpandian and Nandha, J. Gopal et al., Mater. Charact. 159, 110035 (2020)

  14. J. Macavei, H. Schulz, Z. Fur. Krist. - New Cryst. Struct. 207, 193 (1993)

    CAS  Google Scholar 

  15. J. Ruiz-Fuertes, S. López-Moreno, D. Errandonea, J. Pellicer-Porres, R. Lacomba-Perales, A. Segura et al., J Appl Phys 107, 083506 (2010)

    Article  Google Scholar 

  16. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. Nandha Gopal, S. Kalpana et al., J Mater Sci Mater Electron 31, 8865 (2020)

    Article  CAS  Google Scholar 

  17. S.K. Stephen, N. Aloysius Sabu, K.P. Priyanka, and Varghese 2019 T Indian J. Pure Appl. Phys. 57, 1

  18. H.G. Müller, K. Krien, U. Pütz, F. Reuschenbach, R. Trzcinski, K. Freitag, Z. Für. Phys. B. Condens. Matter. Quanta 32, 10 (1979)

    Google Scholar 

  19. S.Z. Ajabshir, M. Zaladi, Cer. Int. 47, 21 (2021)

    Google Scholar 

  20. M. Mousavi, A. Yangjeh, D. Seifzadeh, Mater. Sci. Tech. 34, 9 (2018)

    Google Scholar 

  21. A. Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich et al., Mater. Lett. 238, 1 (2019)

    Article  Google Scholar 

  22. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, K.S.S. Ali, E. Akapo, E. Alemayehu et al., J Mater Sci Mater Electron 30, 2966 (2019)

    Article  CAS  Google Scholar 

  23. M. Tamai, K. Isama, R. Nakaoka, T. Tsuchiya, J Artif Organs 10, 22 (2007)

    Article  CAS  Google Scholar 

  24. A. Karami, R. Monsef, M.R. Shihan, L.Y. Qassem, M.W. Falah, M. Salavati-Niasari, Environ Technol Innov 28, 102947 (2022)

    Article  CAS  Google Scholar 

  25. M. Assis, A.C.M. Tello, F.S.A. Abud, P. Negre, L.K. Ribeiro, R.A.P. Ribeiro, S.H. Masunaga, A.E.B. Lima, G.E. Luz, R.F. Jardim, A.B.F. Silva, J. Andrés, E. Longo, Appl. Surf. Sci. 600, (2022)

  26. T. Gholami, M. Salavati-Niasari, S. Varshoy, Int J Hydrogen Energy 42, 5235 (2017)

    Article  CAS  Google Scholar 

  27. M. Salavati-Niasari, F. Farzaneh, M. Ghandi, J Mol Catal A Chem 186, 101 (2002)

    Article  CAS  Google Scholar 

  28. M. Salavati-Niasari, S.H. Banitaba, J. Mol. Catal. A Chem. 201, 43 (2003)

    Article  CAS  Google Scholar 

  29. M. Masjedi-Arani, M. Salavati-Niasari, Ultrason Sonochem 29, 226 (2016)

    Article  CAS  Google Scholar 

  30. M. Salavati-Niasari, M. Shaterian, M.R. Ganjali, P. Norouzi, J Mol Catal A Chem 261, 147 (2007)

    Article  CAS  Google Scholar 

  31. M. Yousefi, F. Gholamian, D. Ghanbari, M. Salavati-Niasari, Polyhedron 30, 1055 (2011)

    Article  CAS  Google Scholar 

  32. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Chem Eng J 146, 498 (2009)

    Article  CAS  Google Scholar 

  33. A.L. Patterson, Phys Rev 56, 978 (1939)

    Article  CAS  Google Scholar 

  34. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. NandhaGopal, R. Ramanathan, Luminescence 36, 1 (2021)

    Article  Google Scholar 

  35. H.M. Rietveld, The Rietveld method. Phys Scr 10, 1 (2014)

    Google Scholar 

  36. D. Sivaganesh, S. Saravanakumar, V. Sivakumar et al., Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies. J. Mater. Sci. Mater. Electron. 31, 8865–8883 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the contribution of the institution for the characterization of the samples. VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India for PXRD, SEM and UV Analysis. The institution of VFSTR (Deemed to be University), Vadlamudi, Guntur is gratefully recognized for their stable inducement to the research activities for the authors. One of the authors, D. Sivaganesh, gratefully acknowledges the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program, Project 4.38 and Ural Federal University Young Scientist Competition Program-2030) for supporting his research work.

Author information

Authors and Affiliations

Authors

Contributions

Lalitha Kamarasu has contributed to the conceptualization and writing of the manuscript. Satya Sree Nannapaneni has contributed to the formal analysis and supervision of this research work. Saravanavadivu Arunachalam has contributed to the review of the manuscript. Padmapriya Arumugam has contributed to the methodology and writing of the manuscript. Naresh Kumar Katari has contributed to the formal analysis and editing of the manuscript. D. Sivaganesh has contributed to the response to the reviewer comments.

Corresponding author

Correspondence to Satya Sree Nannapaneni.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest in this paper. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarasu, L., Nannapaneni, S.S., Arunachalam, S. et al. Effect of temperature on the rate of reaction of MnWO4 for drug degradation. J Electroceram 51, 210–220 (2023). https://doi.org/10.1007/s10832-023-00325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00325-x

Keywords

Navigation