Skip to main content
Log in

Phase compositions and dielectric properties of Li2Mg3Sn1 − xO6 ceramics attained by reaction sintering process

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The reaction sintering, without calcination and following re-grinding, has been paid increasing attention. Non - stoichiometric Li2Mg3Sn1 − xO6 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were successfully gained through reaction sintering process in the study, and its phase composition, morphology and dielectric characteristics were studied. This XRD patterns of Li2Mg3Sn1 − xO6 samples prepared after sintering at 1,305 ℃ for 6 h indicates that green bodies are mainly composed of Li2Mg3SnO6 phase, accompanied by the second phase of Mg2SnO4. A host of pores, elliptic - like grains and wrinkle - like grains were visibly observed from the SEM images of Li2Mg3Sn1 − xO6 ceramics, which is because of the severe volatilization of Li elements at high temperature. The apparent density, relative permittivity, quality factor and temperature coefficient of resonant frequency of samples will be devastate owing to porous morphology and Mg2SnO4 phase to a large extent. Finally, when x = 0.08, Li2Mg3Sn0.92O6 ceramics have optimal dielectric performances: εr = 9.133, Q×f = 55,429 GHz, τf = -36.1 ppm/℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The original data required to repeat these results cannot be shared now as it is also portion of relevance ongoing work.

References

  1. H. Ohsato, Research and development of microwave dielectric ceramics for wireless communication. J. Ceram. Soc. Jpn. 1323, 703–711 (2005). https://doi.org/10.2109/jcersj.113.703

    Article  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave Dielectric Ceramics for Resonators and Filters in Mobile phone networks. J. Am. Ceram. Soc. 7, 2063–2072 (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  CAS  Google Scholar 

  3. G.Q. He, Y.H. He, Y.J. Liu et al., Sintering behavior, phase composition, microstructure, and dielectric properties of BaSm2O4 microwave ceramics. Ceram. Int. 49, 548–557 (2023). https://doi.org/10.1016/j.ceramint.2022.09.022

    Article  CAS  Google Scholar 

  4. G.Q. He, X.Y. Ma, Y.J. Liu et al., Sintering characteristics and microwave dielectric properties of ultralow-loss SrY2O4 ceramics. Ceram. Int. 48, 21299–21304 (2022). https://doi.org/10.1016/j.ceramint.2022.04.081

    Article  CAS  Google Scholar 

  5. G.Q. He, Y.J. Liu, H.F. Zhou et al., Sintering behavior, phase composition, microstructure, and dielectric characteristics of garnet-type Ca3Fe2Ge3O12 microwave ceramics. J. Materiomics. 9, 472–481 (2023). https://doi.org/10.1016/j.jmat.2022.12.005

    Article  Google Scholar 

  6. Z.F. Fu, P. Liu, J.L. Ma et al., Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 3, 625–629 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.040

    Article  CAS  Google Scholar 

  7. Y.C. Chen, Y.N. Wang, C.H. Hsu, Elucidating the dielectric properties of Mg2SnO4 ceramics at microwave frequency. J. Alloys Compd. 40, 9650–9653 (2011). https://doi.org/10.1016/j.jallcom.2011.07.065

    Article  CAS  Google Scholar 

  8. Z.X. Fang, B. Tang, F. Si et al., Phase evolution, structure and microwave dielectric properties of Li2 + xMg3SnO6 (x = 0.00–0.12) ceramics. Ceram. Int. 16, 13645–13652 (2017). https://doi.org/10.1016/j.ceramint.2017.07.074

    Article  CAS  Google Scholar 

  9. X.L. Shi, H.W. Zhang, F. Xu et al., Effects of non-stoichiometry on the structural evolution, microstructure and dielectric properties of rock salt-type Li2Mg3SnO6 ceramics. J. Mater. Res. Technol. 13, 283–290 (2021). https://doi.org/10.1016/j.jmrt.2021.04.066

    Article  CAS  Google Scholar 

  10. R.Z. Zuo, J. Zhang, J. Song et al., Liquid-phase sintering, microstructural evolution and microwave dielectric properties of Li2Mg3SnO6-LiF ceramics. J. Am. Ceram. Soc. 2, 569–576 (2018). https://doi.org/10.1111/jace.15257

    Article  CAS  Google Scholar 

  11. H. Barzegar Bafrooei, E. Taheri Nassaj, T. Ebadzadeh et al., Sintering behavior and microwave dielectric characteristics of ZnTiNb2O8 ceramics achieved by reaction sintering of ZnO - TiO2 - Nb2O5 nanosized powders. Ceram. Int. 42, 3296–3303 (2016). https://doi.org/10.1016/j.ceramint.2015.10.121

    Article  CAS  Google Scholar 

  12. J.D. Guo, W.B. Ma, M.J. Ma et al., Sintering characteristic and microwave dielectric properties of ultra-low loss Li2Mg3TiO6 ceramic prepared by reaction-sintering process. J. Mater. Sci. Mater. Electron. 29, 3640–3647 (2018). https://doi.org/10.1007/s10854-017-8294-3

    Article  CAS  Google Scholar 

  13. A. Sayyadi-Shahraki, E. Taheri-Nassaj, H. Barzegar-Bafrooei et al., Microwave dielectric properties of Li2ZnTi3O8 ceramics prepared by reaction-sintering process. J. Mater. Sci. Mater. Electron. 25, 1117–1121 (2014). https://doi.org/10.1007/s10854-013-1697-x

    Article  CAS  Google Scholar 

  14. H.L. Pan, C.F. Xing, J.X. Bi et al., Sintering characteristics and microwave dielectric properties of low loss MgZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 274–279 (2016). https://doi.org/10.1016/j.jallcom.2016.06.029

  15. J. Song, J. Zhang, R.Z. Zuo, Ultrahigh Q values and atmosphere-controlled sintering of Li2(1+x)Mg3ZrO6 microwave dielectric ceramics. Ceram. Int. 2, 2246–2251 (2017). https://doi.org/10.1016/j.ceramint.2016.11.008

    Article  CAS  Google Scholar 

  16. X. Hu, J. Jiang, J. Wang, L. Gan, T. Zhang, A new additive free microwave dielectric ceramic system for LTCC applications: (1-x)CaWO4 - x(Li0.5Sm0.5)WO4. J. Mater. Sci. Mater. Electron. 31, 2544–2550 (2020). https://doi.org/10.1007/s10854-019-02791-y

    Article  CAS  Google Scholar 

  17. G. Wang, D.N. Zhang, G.W. Gan et al., Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 16, 19766–19770 (2019). https://doi.org/10.1016/j.ceramint.2019.06.230

    Article  CAS  Google Scholar 

  18. K. Xiao, C.C. Li, H.C. Xiang et al., Reaction sintering of a rock salt structured Li4WO5 ceramic and its microwave dielectric properties. J. Mater. Sci. Mater. Electron. 29, 6397–6402 (2018). https://doi.org/10.1007/s10854-018-8619-x

    Article  CAS  Google Scholar 

  19. C.F. Xing, Y.H. Zhang, B.J. Tao et al., Crystal structure, infrared spectra and microwave dielectric properties of low-firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 17, 22376–22383 (2019). https://doi.org/10.1016/j.ceramint.2019.07.142

    Article  CAS  Google Scholar 

  20. Y. Zhang, S. Ding, L. You, Y. Zhang, Temperature stable microwave dielectric ceramic CoTiNb2O8 - Zn1.01Nb2O6 with ultra-low dielectric loss. J. Electron. Mater. 48, 867–872 (2018). https://doi.org/10.1007/s11664-018-6795-3

    Article  CAS  Google Scholar 

  21. P.C. Zhang, H. Li, X.Q. Chen et al., A novel low - loss Ba12InNb9O36 microwave dielectric ceramic with 18-layer hexagonal perovskite structure. J. Eur. Ceram. Soc. 41, 7044–7049 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.07.044

    Article  CAS  Google Scholar 

  22. Y.J. Qian, Q. Zhang, X.L. Tang et al., Sintering characteristics and microwave dielectric properties of low - temperature - fired (1-x)Li3Mg2NbO6 - xLi2WO4 ceramics. J. Mater. Sci. Mater. Electron. 32, 22450–22458 (2021). https://doi.org/10.1007/s10854-021-06731-7

    Article  CAS  Google Scholar 

  23. R. Xiang, H. Su, Q. Zhang et al., Crystal structure and improved microwave dielectric properties of ZnZr(1-x)TixNb2O8 ceramics. J. Mater. Sci. Mater. Electron. 31, 4769–4779 (2020). https://doi.org/10.1007/s10854-020-03034-1

    Article  CAS  Google Scholar 

  24. H.F. Zhou, W.D. Sun, X.B. Liu et al., Microwave dielectric properties of LiCa3ZnV3O12 and NaCa2Mg2V3O12 ceramics prepared by reaction-sintering. Ceram. Int. 2, 2629–2634 (2019). https://doi.org/10.1016/j.ceramint.2018.10.205

    Article  CAS  Google Scholar 

  25. P. Zhang, H. Xie, Y.G. Zhao, M. Xiao, Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+, Ni2+ Zn2+, Mn2+) ceramics system. J. Alloys Compd. 689, 246–249 (2016). https://doi.org/10.1016/j.jallcom.2016.07.198

    Article  CAS  Google Scholar 

  26. S.C. Zhou, Q. Wu, H.R. Xu et al., Synthesis and characterization of reaction sintered CaTiO3 -LnAlO3 (ln = La, nd) ceramics. Ceram. Int. 22, 32433–32437 (2021). https://doi.org/10.1016/j.ceramint.2021.08.144

    Article  CAS  Google Scholar 

  27. T. Yang, Z.X. Han, P. Liu, B.C. Guo, Microwave dielectric properties of Mg4Nb2O9 ceramics with excess mg(OH)2 produced by a reaction-sintering process. Ceram. Int. 1, 572–575 (2015). https://doi.org/10.1016/j.ceramint.2015.03.195

    Article  CAS  Google Scholar 

  28. P.C. Zhang, H. Li, X.Q. Chen et al., A novel low-loss microwave dielectric ceramic Ba16ZrNb12O48. J. Eur. Ceram. Soc. 41, 165–170 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.015

    Article  CAS  Google Scholar 

  29. J.M. Li, P. Xu, T. Qiu et al., Sintering characteristics and microwave dielectric properties of 0.5Ca0.6La0.267TiO3 – 0.5Ca(Mg1/3Nb2/3)O3 ceramics prepared by reaction sintering process. J. Rare E. 4, 404–408 (2018). https://doi.org/10.1016/j.jre.2017.10.004

    Article  CAS  Google Scholar 

  30. W.W. Wang, C. Liu, L. Shi et al., Effects of Li2O - B2O3 - SiO2 - CaO - Al2O3 glass addition on the sintering behavior and microwave dielectric properties of Li3Mg2NbO6 ceramics. Appl. Phys. A 125, 602–608 (2019). https://doi.org/10.1007/s00339-019-2894-0.4

    Article  Google Scholar 

  31. C.F. Xing, Y.H. Zhang, B.J. Tao et al., Crystal structure, infrared spectra and microwave dielectric properties of low - firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 45, 22376–22382 (2019). https://doi.org/10.1016/j.ceramint.2019.07.142

    Article  CAS  Google Scholar 

  32. Y.C. Chen, K.C. Chen, W.C. Lee, Effect of sintering temperature and time on microwave dielectric properties of lanthanum tin oxide. J. Mater. Sci. Mater. Electron. 24, 1878–1882 (2013). https://doi.org/10.1007/s10854-012-1028-7

    Article  CAS  Google Scholar 

  33. X.Q. Liu, X.M. Chen, Y. Xiao, Preparation and characterization of LaSrAlO4 microwave dielectric ceramics. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 103, 276–280 (2003). https://doi.org/10.1016/S0921-5107(03)00266-6

    Article  CAS  Google Scholar 

  34. S.H. Yoon, D.W. Kim, S.Y. Cho et al., Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.058

    Article  CAS  Google Scholar 

Download references

Funding

Unfunded.

Author information

Authors and Affiliations

Authors

Contributions

Yu Zhang: Material preparation, visualization, material testing, formal analysis, Writing - original draft. Jianli Ma: Funding acquisition, resources, conceptualization, methodology, supervision, Writing - review & editing. Chang Li: Formal analysis, material testing, visualization, Writing - review & editing. Chen Chen: Material preparation, formal analysis, Writing - review & editing. Yubin She: Material preparation, data curation.

Corresponding author

Correspondence to Jianli Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

All the related experiments involved in the manuscript are chemical experiments, and the purpose of the experiment is to prepare microwave dielectric ceramics. Therefore, ethical approval does not apply to this article.

Informed content

This article has obtained the informed consent of all participants.

Human and animal rights

This article does not include any research involving humans or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, J., Li, C. et al. Phase compositions and dielectric properties of Li2Mg3Sn1 − xO6 ceramics attained by reaction sintering process. J Electroceram 51, 51–58 (2023). https://doi.org/10.1007/s10832-023-00317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00317-x

Keywords

Navigation