Skip to main content
Log in

Study on growth, optical and dielectric properties of ‘Nd’ DOPED NBT-BT (0.94(Na0.5Bi0.5tio3)-0.06batio3) relaxor ferroelectric single crystals

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The present work describes the effect of Neodymium (Nd) in the NBT-BT (0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-BT (94/06)) + xNd (x = 0, 0.4, 0.6, 0.8, 1.0 wt%)) crystal grown by flux method. As the concentration of the Nd increases beyond 0.4 wt%, homogeneity of the solution is lost and the multinucleation was observed. Color of the crystal changed from yellow to muddy green and size of the crystals were reduced due to the incorporation of Nd in NBT-BT. Nd completely diffused into the NBT-BT lattice, hence no secondary phase formation was observed in XRD. But the peaks were shifted towards the higher angle side due to the shrinkage of NBT-BT lattice. Optical properties of the crystals are studied using UV–visible and photoluminescence spectra. Except 0.4 wt% of Nd, for all other concentration emission at 1064 nm was observed in the PL spectra. Effect of Nd in dielectric constant and the relaxor properties are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. H. Yilmaz, S. Trolier, G. Messing, J. Electroceramics 11, 217–226 (2003). https://doi.org/10.1023/B:JECR.0000026376.48324.21

    Article  CAS  Google Scholar 

  2. A.J.H.J.M. Moulson, Electroceramics: materials, properties, applications (New York, Chapman and Hall, London, 1990), p. 464

    Google Scholar 

  3. B.C.W.R.J.H.L. Jaffe, Piezoelectric ceramics (Academic Press, London and New York, 1971)

    Google Scholar 

  4. K.H. Hardtl, D. Henings, J. Am. Ceram. Soc 55, 230–231 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11267.x

    Article  Google Scholar 

  5. K.B. Ian, M. Reaney, R. Klissurska, C. Pawlaczyk, N. Setter, J. Am. Ceram. Soc 77, 1209–1216 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05394.x

    Article  Google Scholar 

  6. S.H. Kim, D.J. Kim, J. Hong, S.K. Streiffer, A.I. Kingon, J. Mater. Res 14(4), 1371–1377 (1999). https://doi.org/10.1557/JMR.1999.0187

  7. X. Dai, Z. Xu, D. Viehland, J. Am. Ceram. Soc 78(10), 2815–2827 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08059.x

  8. F. Li, K.W. Kwok, J. Eur. Ceram. Soc 33, 123–130 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.017

    Article  CAS  Google Scholar 

  9. C.J. Lee, V.D. Slot, P.J.M., K. J Boller, J. Phys. D 46(1), 015103 (2013) https://doi.org/10.1088/0022-3727/46/1/015103

  10. B. Barick, Choudhary, R.N.P.D. Pradhan, Mater. Chem. Phys 132, 1007–1014 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.050

  11. M. Wu, Lu, YQ, Li, YX. J. Am. Ceram. Soc 90, 3642–3645 (2007)

    Article  CAS  Google Scholar 

  12. Y. Lin, S. Zhao, N. Cai, J. Wu, X. Zhou, C.W. Nan, Mater Sci Eng B Solid State Mater Adv Technol 99, 449–452 (2003). https://doi.org/10.1016/S0921-5107(02)00465-8

    Article  CAS  Google Scholar 

  13. J.Y. Yi, J.K. Lee, J. Phys. D 44, 4153021-4153027 (2011). https://doi.org/10.1088/0022-3727/44/41/415302

  14. Z.W.X. Tian, Y. Jia, J. Chen, Zheng, R. K, Y. Zang, H. Luo, Appl. Phys. Lett 102, 0429071-0429073 (2013)

  15. K. Aizawa, Y. Ohtani, Jpn. J. Appl. Phys 47(9), 7549–7552 (2008). https://doi.org/10.1143/jjap.47.7549

  16. S.E. Moon, S.B. Back, S.I. Kwun, Y.S. Lee, T.W. Noh, T.K. Song, J.G. Yoon, Jpn. J. Appl. Phys 39, 5916–5917 (2000)

    Article  CAS  Google Scholar 

  17. H. Nakaki, H. Uchida, S. Koda, S. Okamoto, H. Funakubo, K. Nishida, T. Katoda, K. Saito, Appl. Phys. Lett 87, 182906–182906 (2005). https://doi.org/10.1063/1.2125123

  18. J. Bubesh Babu, M. He, D. F. Zhang, X. L. Chen, R. Dhanasekaran, Appl. Phys. Lett 90(10), 102901 (2007). https://doi.org/10.1063/1.2709917

  19. H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett 58, 1194–1198 (2004). https://doi.org/10.1016/j.matlet.2003.08.034

    Article  CAS  Google Scholar 

  20. M. Zannena, A. Lahmar, M. Dietze, H. Khemakhem, A. Kabadou, M. E. Souni, Mater. Chem. Phys 134, 829-833 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.076

  21. C. He, Y. Zhang, L. Sun, J. Wang, T. Wu, F. Xu, C. Du, K. Zhu, Y. Liu, J. Phys. D 46, 2451041–2451045 (2013). https://doi.org/10.1088/0022-3727/46/24/245104

    Article  CAS  Google Scholar 

  22. F. Wu, W. Lin, J. Wang, C. Zhang, J. Fan, Integr Ferroelectr 190(1), 85–90 (2018). https://doi.org/10.1080/10584587.2018.1457331

  23. R. Kanuru, K. Srinadha, Baskar, R. Dhanasekaran, B. Kumar,. J. Cryst. Growth 441, 64–70 (2016). https://doi.org/10.1016/j.jcrysgro.2016.01.024

    Article  CAS  Google Scholar 

  24. R. Dibyaranjan, S.M. Kyoung, V. Kang, S. Joong, J. Ceramic Soc. Jpn 117, 797–800 (2009). https://doi.org/10.2109/jcersj2.117.797

  25. Y.M. González, A.P. Barranco, J.D.S. Guerra, J. Electroceram 44, 87–94 (2020). https://doi.org/10.1007/s10832-019-00191-6

    Article  Google Scholar 

  26. A. Paterson, H. Nagata, X. Tan, J. Daniels, M. Hinterstein, R. Ranjan, P. Groszewicz, W. Jo, J. Jones, MRS Bull. 43, 600–606 (2018). https://doi.org/10.1557/mrs.2018.156

    Article  CAS  Google Scholar 

  27. Chen, C. Sao, C. S. Tu, P. Chen, Y. Ting, S. Chiu, C. M. Hung, Lee, H. Yi, Wang, Sea-Fue, J. Anthoniappen, V. H. Schmidt, R. R. Chien, J Cryst Growth 393 (2014) https://doi.org/10.1016/j.jcrysgro.2013.09.011

  28. A.G.A. Darwish, Y. Badr, M.E. Shaarawy, N.H.M. Shah, I.K. Battisha, J. Alloys Compd 489, 451–455 (2010). https://doi.org/10.1016/j.jallcom.2009.09.021

    Article  CAS  Google Scholar 

  29. C. Xu, D. Lin, K. Wok, Solid State Sci. 10, 934–940 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.003

    Article  CAS  Google Scholar 

  30. M. Schutz, W. Deluca, A. Krauss, T. Feteira, K. Jackson, Reichmann. Adv. Funct. Mater 22, 2285–2294 (2012). https://doi.org/10.1002/adfm.201102758

    Article  CAS  Google Scholar 

  31. W. Bai, D. Chen, Y. Huang, P. Zheng, J. Zhong, M. Ding, Y. Yuan, Bo. Shen, J. Zhai, Zhenguo Ji Ceramics International 42, 7669–7680 (2016). https://doi.org/10.1016/j.ceramint.2016.01.181

    Article  CAS  Google Scholar 

  32. V.K. Raik, S.B. Raik, D.K. Raik, Spectrochim. Acta A Mol 62, 302–306 (2005). https://doi.org/10.1016/j.saa.2004.12.043

    Article  CAS  Google Scholar 

  33. S. Devi, C. H, M. Vithal, G. S. Kumar, G. Prasad, J. Mater. Sci.: Mater. Electron 22, 1855–1862 (2011). https://doi.org/10.1007/s10854-012-1023-z

  34. C. Tu, I. G. Siny, V. H. Schmidt, Phys Rev B Condens Matter 49, 17, 11550–11559 (1994). https://doi.org/10.1103/physrevb.49.11550

  35. S. Shanmuga Sundari, B. Kumar, R. Dhanasekaran, Ceram. Int 39, 555–561 (2013). https://doi.org/10.1016/j.ceramint.2012.06.063

Download references

Acknowledgements

One of the authors SSS is very thankful to DST-WoS A, Department of Science and Technology, New Delhi, India (SR/WOS-A/PM-109/2016) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuga Sundari Sankaran.

Ethics declarations

Conflict of interest statement

The authors whose names are listed immediately below certify that this manuscript is the authors’ original work and has not been published nor has been submitted simultaneously elsewhere. There is no conflict of interest for this article. Shanmuga Sundari Sankaran, Dhanasekaran. R, Binay Kumar, Durairajan. A, Valente M.A., Devaraj Stephen. L.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, S.S., R, D., Kumar, B. et al. Study on growth, optical and dielectric properties of ‘Nd’ DOPED NBT-BT (0.94(Na0.5Bi0.5tio3)-0.06batio3) relaxor ferroelectric single crystals. J Electroceram 48, 143–156 (2022). https://doi.org/10.1007/s10832-022-00282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00282-x

Keywords

Navigation