Skip to main content
Log in

Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (NPs) are of interest for use in magnetic hyperthermia. To achieve high efficient NPs as a heating agent, it is important to know the effect of processing parameters on the synthesis, microstructure and magnetic properties of NPs and their relationship with the systems’ specific loss power (SLP). In the present study, zinc cobalt ferrite NPs were precipitated using the co-precipitation method, and calcined at 550, 650 and 750 °C for 1 and 2 h. Then to evaluate their hyperthermia properties, ferrofluids of neat and PEGylated NPs (NPs@PEG) were studied. The analysis of X-ray diffraction (XRD), field emission electron microscopy (FESEM), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), zeta potential and transmission electron microscopy (TEM) were used to characterize the NPs. It was found that the processing parameters had a significant effect on the microstructure, magnetic and hyperthermia properties of the synthesized NPs. With increasing the time and temperature of calcination, particle size and magnetic properties like anisotropic constant, magnetic moment and saturation magnetization increased too. Hyperthermia results showed that the synthesized NPs at 550 °C for 2 h produced more heat than the other samples. It was also found that the concentration of NPs had a great influence on the heat generated by the prepared ferrofluids. Ferrofluids containing 5 mg/ml of NPs synthesized at 550 °C for 2 h had the highest heating efficiency such that the SLP value of NPs and NPs@PEG was 139.3 and 83.6 W/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Ceram. Int. 46, 8640 (2020)

    Article  CAS  Google Scholar 

  2. R. Asadi, H. Abdollahi, M. Gharabaghi, Adv. Powder Technol. 31, 1480 (2020)

    Article  CAS  Google Scholar 

  3. V.P. Senthil, J. Gajendiran, S.G. Raj, T. Shanmugavel, G.R. Kumar, C.P. Reddy, Chem. Phys. Lett. 695, 19 (2018)

    Article  CAS  Google Scholar 

  4. R. Yang, X. Yu, H. Li, C.Wang, C. Wu, W. Zhang, W. Guo, J. Alloys Compd. 851, 156907 (2021)

  5. V. Mahdikhah, A. Ataie, A. Babaei, S. Sheibani, C.W.O. Yang, S.K. Abkenar, J. Phys. Chem. Solids. 134, 286 (2019)

    Article  CAS  Google Scholar 

  6. M. Shakil, U. Inayat, M.I. Arshad, G. Nabi, N.R. Khalid, N.H. Tariq, A. Shah, M.Z. Iqbal, Ceram. Int. 46, 7767 (2020)

    Article  CAS  Google Scholar 

  7. B. Shahbahrami, S.M. Rabiee, R. Shidpoor, Adv. Ceram. Prog. 6, 1 (2020)

    Google Scholar 

  8. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, Ceram. Int. 46, 15740 (2020)

    Article  CAS  Google Scholar 

  9. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Physica B 583, 412051 (2020)

  10. Ch. Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, Ch. Seshu Babu, K.S. Ramakrishna, D.M. Potukuchi, D.L. Sastry, J. Mag. Mag. Mater. (2016) https://doi.org/10.1016/j.jmmm.2016.01.060

  11. M.K. Satheeshkumar, E. Ranjith Kumar, Ch. Srinivas, N. Suriyanarayanan, M. Deepty, C. L. Prajapat, T. V. Chandrasekhar Rao, D. L. Sastry, J. Mag. Mag. Mater. (2018) https://doi.org/10.1016/j.jmmm.2018.09.039

  12. M. Deepty, Ch. Srinivas, E. Ranjith Kumar, N. Krisha Mohan, C.L. Prajapat, T.V. Chandrasekhar Rao, Sher Singh Meena, Amit Kumar Verma, D.L. Sastry, Ceram. Int. 45, 8037 (2019)

  13. M.K. Jaiswal, D. Mrinmoy, S.S. Chou, S. Vasavada, R. Bleher, P.V. Prasad, D. Bahadur, V.P. Dravid, Am. Chem. Soc. 6, 6237 (2014)

    CAS  Google Scholar 

  14. L. Kafrouni, O. Savadogo, Prog. Biomater. 5, 147 (2016)

    Article  CAS  Google Scholar 

  15. M.S. Sharma, H.K. Satyapal, R.K. Singh, J. Mater. Sci: Mater. Electron. 32, 23843 (2021)

    Google Scholar 

  16. H. Fatima, T. Charinpanitkul, K.S. Kim, Nanomater. 11, 1203 (2021)

    Article  CAS  Google Scholar 

  17. J.P. Zhou, Z. Shi, H. He, C. Nan, J. Electroceram. 21, 681 (2008)

    Article  CAS  Google Scholar 

  18. S. Halder, S. I. Liba, A. Nahar, S.S. Sikder, S.M. Hoque, AIP Adv. 10, 125308 (2020)

  19. P. Tancredi, P.C. Rivas-Rojas, O. Moscoso-Londono, D. Muraca, M. Knobel, L.M. Socolovsky, J. Alloys Compd. 894, 162432 (2021)

  20. K. Maaz, S. Karim, G. Kim, Effect of particle size on the magnetic properties of NixCo1-xFe2O4 nanoparticles. Chem. Phys. 549, 67 (2012)

    CAS  Google Scholar 

  21. A.E. Deatsch, B.A. Evans, J. Mag. Mag. Mater. 354, 163 (2014)

    Article  CAS  Google Scholar 

  22. A.C. Blanco, A. Walter, G. Cotin, C. Bordeianu, D. Mertz, F.D. Felder, C.S. Begin, Nanomed. 14, 1889 (2016)

    Article  Google Scholar 

  23. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.298

    Article  Google Scholar 

  24. B. Shahbahrami, S.M. Rabiee, R. Shidpoor, Iranian. J. Ceram. Sci. Eng. 10(3), 91 (2021) (Farsi)

  25. A.T. Dhiwahar, M. Sundararajan, P. Sakthivel, C.S. Dash, S. Yuvaraj, J. Phys. Chem. Solids 138, 109257 (2020)

  26. F.S.M. Nio, P.Y.C. Santana, S.F.N. Coelho, F.C. Silva, A.S.D. Menezes, S.K. Sharma, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-5081-5

    Article  Google Scholar 

  27. S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad, K. Srinivasarao, Ch. Srinivas, K. Vijaya Babu, E. Ranjith Kumar, N. Krisha Mohan, D.L. Sastry, Ceram. Int. 44, 10517 (2018)

  28. B. Shahbahrami, S.M. Rabiee, R. Shidpoor, H. Salimi-Kenari, Int. J. Eng. Transactions A: Basics 35(1), 14 (2022)

  29. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, Massachusetts, 1978), pp. 356–358

    Google Scholar 

  30. A. Bajorek, C. Berger, M. Dulski, P. Lopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, N. Randrianantoandro, J. Phys. Chem. Solids. 129, 1 (2019)

    Article  CAS  Google Scholar 

  31. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He, Materials 11, 1799 (2018)

    Article  Google Scholar 

  32. J.T. Jang, S. Bae, Appl. Phys. Lett. 111, 183703 (2017)

  33. S.G.C. Fonseca, L.S. Neiva, M.A.R. Bonifácio, P.R.C.D. Santos, U.C. Silva, J.B. Oliveira, Mater. Res. 21, e2017086 (2018)

  34. T. Zeeshan, S. Anjum, H. Iqbal, R. Zia, Mater. Sci-Poland 36, 255 (2018)

    Article  CAS  Google Scholar 

  35. M. Ansari, A. Bigham, S.A. Hassanzadeh-Tabrizi, H. Abbastabar-Ahangar, J. Am. Ceram. Soc. 101, 3649 (2018)

    Article  CAS  Google Scholar 

  36. Ch. Srinivas, E. Ranjith Kumar, B.V. Tirupanyam, S.S. Meena, P. Bhatt, C.L. Prajapat, T.V. Chandrasekhar Rao, D.L. Sastry, J. Mag. Mag. Mater. 502, 166534 (2020)

  37. C.E. Demirci, P.K. Manna, Y. Wroczynskyj, S. Aktürk, J.V. Lierop, J. Mag. Mag. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.024

    Article  Google Scholar 

  38. A. Yasemiana, M. Almasi Kashi, A. Ramazani, Mater. Chem. Phys. 230, 9 (2019)

  39. S.I. El-Dek, M.A. Ali, S.M. El-Zanaty, S.E. Ahmed, J. Mag. Mag. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.02.052

    Article  Google Scholar 

  40. C. Vinuthna, K.C. Naidu, C. Sekhar, R. Dachepalli, Int. J. Appl. Ceram. Technol. 16, 1944 (2019)

    Article  Google Scholar 

  41. V. Pilati, R.C. Gomes, G. Gomide, P. Coppola, F.G. Silva, F.L. Paula, R. Perzynski, G.F. Goya, R. Aquino, J. Depeyrot, J. Phys. Chem. C 122, 3028 (2018)

    Article  CAS  Google Scholar 

  42. P.H. Linh, N.T. Anh, P.H. Nam, T.N. Bach, V.D. Lam, D.H. Manh, IEEE Trans. Mag. (2018) https://doi.org/10.1109/TMAG.2018.2815080

  43. A. Yasemiana, M. Almasi Kashi, A. Ramazani, J. Mater. Sci.: Materials in Electronics (2019) https://doi.org/10.1007/s10854-019-02501-8

  44. P.B. Balakrishnan, N.Silvestri, T.Fernandez-Cabada, F. Marinaro, S. Fernandes, S. Fiorito, M. Miscuglio, D. Serantes, S. Ruta, K. Livesey, O. Hovorka, R. Chantrell, T. Pellegrino, Adv. Mater. 2003712 (2020)

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Materials Engineering, Babol Noshirvani University of Technology for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Mahmood Rabiee.

Ethics declarations

Conflict of interest

The authors have no conficts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbahrami, B., Rabiee, S.M., Shidpour, R. et al. Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. J Electroceram 48, 157–168 (2022). https://doi.org/10.1007/s10832-022-00281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00281-y

Keywords

Navigation