Skip to main content
Log in

The vibro-acoustic analysis of a matching layer attached on a 1–3 piezoelectric composite transducer

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A well-designed matching layer attached to a transducer is an effective method to obtain broad bandwidth. In practical applications, the optimal material parameters and geometric parameters for the matching layer are required to be calculated precisely. In this paper, we propose a fluid–structure interaction model for vibro-acoustic analysis of the transducer. An analytical solution to determine the electrical impedance of a transducer with a matching layer immersed in water is derived. The influence of matching layer on the performance of the transducer is demonstrated clearly. To verify the proposed model, a 1–3 piezoelectric composite transducer with a matching layer according to the our proposed model is fabricated. Consequently, the theoretical model we proposed can accurately predict the electrical impedance of the transducer with a matching layer. According to the model, the optimal thickness and acoustic impedance for the matching layer to expand the conductance bandwidth of the transducer can be figured out accurately. In addition, our proposed model also provides a reference for designing a transducer with a matching layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included.

Code availability

Not applicable.

Abbreviations

\(c_{33}^{E}\) :

Elastic stiffness constant \({N \mathord{\left/ {\vphantom {N {m^{2} }}} \right. \kern-\nulldelimiterspace} {m^{2} }}\)

\(\varepsilon_{33}^{E}\) :

 Dielectric constant \({F \mathord{\left/ {\vphantom {F m}} \right. \kern-\nulldelimiterspace} m}\)

\({\text{e}}_{33}\) :

Piezoelectric stress constant \({C \mathord{\left/ {\vphantom {C {m^{2} }}} \right. \kern-\nulldelimiterspace} {m^{2} }}\)

\(\rho^{c}\) :

Piezoelectric phase density \({{Kg} \mathord{\left/ {\vphantom {{Kg} {m^{3} }}} \right. \kern-\nulldelimiterspace} {m^{3} }}\)

\(\rho^{p}\) :

Aggregate phase density \({{Kg} \mathord{\left/ {\vphantom {{Kg} {m^{3} }}} \right. \kern-\nulldelimiterspace} {m^{3} }}\)

\(u_{i}\) :

Displacement vector \(m\)

\(T_{ij}\) :

Stress tensor \({N \mathord{\left/ {\vphantom {N {m^{2} }}} \right. \kern-\nulldelimiterspace} {m^{2} }}\)

\(S_{ij}\) :

Strain tensor

\(E_{i}\) :

Electric field vector \({V \mathord{\left/ {\vphantom {V m}} \right. \kern-\nulldelimiterspace} m}\)

\(D_{i}\) :

Electric displacement vector \({C \mathord{\left/ {\vphantom {C m}} \right. \kern-\nulldelimiterspace} m}^{2}\)

\(\phi\) :

Electric potential \(V\)

\(c_{ijkl,} c_{pq}\) :

Elastic constant \({N \mathord{\left/ {\vphantom {N m}} \right. \kern-\nulldelimiterspace} m}^{2}\)

\(e_{kij}\) :

Piezoelectric constant \({C \mathord{\left/ {\vphantom {C m}} \right. \kern-\nulldelimiterspace} m}^{2}\)

\(\varepsilon_{ik}\) :

Dielectric constant \({F \mathord{\left/ {\vphantom {F m}} \right. \kern-\nulldelimiterspace} m}\)

\(\rho\) :

Piezoelectric vibrator density \({{Kg} \mathord{\left/ {\vphantom {{Kg} m}} \right. \kern-\nulldelimiterspace} m}^{3}\)

\(p\) :

Pressure amplitude of Ultrasonic wave \(Pa\)

\(\omega\) :

Angular frequency (2πf)\(Hz\)

\(k\) :

Wave number \(m^{ - 1}\)

\(c\) :

Speed of ultrasound \({m \mathord{\left/ {\vphantom {m s}} \right. \kern-\nulldelimiterspace} s}\)

\(Z\) :

Electrical impedance \(\Omega\)

\(S\) :

Electrode surface area \(m^{2}\)

\(d\) :

Diameter of the 1–3 Piezoelectric composite disc \(m\)

\(h\) :

Thickness of the 1–3 Piezoelectric composite disc \(m\)

\(k_{33}\) :

Thickness-extensional Coupling factor

\(V\) :

 Voltage \(V\)

\(I\) :

Electric current \(A\)

\(Y\) :

Admittance \(S\)

\(G\) :

Conductance \(S\)

\(B\) :

Susceptance \(S\)

References

  1. D. Callens, C. Bruneel, J. Assaad, Matching ultrasonic transducer using two matching layers where one of them is glue. NDT E Int. 37, 591–596 (2004)

    Article  CAS  Google Scholar 

  2. H.P. Yu, L.Y. Song, Multi-modal vibration transducer band widening in several ways. Comput. Electr. Eng. 55, 23–27 (1999). (in Chinese)

    Google Scholar 

  3. G.H. Feng, W.F. Liu, A Spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate. Sensors. 13, 543–559 (2013)

    Google Scholar 

  4. H.J. Fang, Y. Chen, C.M. Wong et al., Anodic aluminum oxide–epoxy composite acoustic matching layers for ultrasonic transducer application. Ultrasonics 70, 29–33 (2016)

    Article  CAS  Google Scholar 

  5. Z. Li, D.Q. Yang, S.L. Liu et al., Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Sci Rep. 7, 42863 (2017)

    Article  CAS  Google Scholar 

  6. S. Saffar, A. Abdullah, R. Othman, Influence of the thickness of matching layers on narrow band transmitter ultrasonic airborne transducers with frequencies < 100 kHz: application of a genetic algorithm. Appl Acoust. 75, 72–85 (2014)

    Article  Google Scholar 

  7. R. Drake, ANSI/ASA S1.20-2012, “Procedures for calibration of underwater electroacoustic transducers”, revision details. J. Acoust. Soc. Am. 138, 1822–1822 (2015)

    Article  Google Scholar 

  8. S.Y. Lin, Principle and design of ultrasonic transducer (Science Press, Beijing, China, 2004). (in Chinese)

    Google Scholar 

  9. G.R. Lockwood, D.H. Turnball, D.A. Christopher et al., Beyond 30 MHz [applications of high frequency ultrasound imaging]. IEEE Eng. Med. Biol. Mag. 15, 60–71 (1996)

    Article  Google Scholar 

  10. Q. Zhou, S. Lau, D. Wu et al., Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 56, 139–174 (2011)

    Article  CAS  Google Scholar 

  11. G. Kossoff, The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Trans. Sonics Ultrason. SU-13, 20–30 (1966)

  12. M.R. Draheim, W. Cao, Finite element analysis on impedance matching layer thickness. In ISAF'96. Proceedings of the 10th IEEE international symposium on applications of ferroelectrics. 2, 1015–1017 (1996)

  13. C.S. Desilets, J.D. Fraser, G.S. Kino, The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978)

    Article  Google Scholar 

  14. V.T. Rathod, A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors. 20, 4051 (2020)

    Article  Google Scholar 

  15. N Guo, The vibration characteristics of piezoelectric discs. Imperial College London. (1990)

  16. Z.Y. Ye, H.D. Wu, Research on the transducer's matching layer parameters optimization. Piezoelectric & Acoustooptics. 368–372 (2015) (in Chinese)

  17. Z.T. Yang, H. Wang, C.L. Zhao et al., Modeling of 1–3 piezoelectric composites operating in thickness-stretch vibration mode. Philos. Mag. Lett. 95(6), 324–332 (2015)

    Article  CAS  Google Scholar 

  18. Z. Chao, L.K. Wang, Q. Lei et al., Expand bandwidth of composite transducer via matching layer design. Ferroelectr. Lett. Sect. 44, 58–64 (2017)

    Article  Google Scholar 

  19. R.X. Yao, Z.F. Shi, Steady-state forced vibration of functionally graded piezoelectric beams. J. Intell. Mater. Syst. Struct. 22, 769–779 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Project of Chongqing under Grant cstc2019jcyj-msxmX0098.

Funding

This work was supported by the Natural Science Foundation Project of Chongqing under Grant cstc2019jcyj-msxmX0098.

Author information

Authors and Affiliations

Authors

Contributions

Concepts and ideas: ZTY and DPZ; Experimental design: YQS and YL; Collect and assemble data: YL and YW; Data analysis and interpretation: all authors; Manuscript writing: all authors; Final approval of the manuscript: all authors; Responsible for all aspects of the work: all authors.

Corresponding authors

Correspondence to Deping Zeng or Zengtao Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, Y., Huang, Z. et al. The vibro-acoustic analysis of a matching layer attached on a 1–3 piezoelectric composite transducer. J Electroceram 48, 102–109 (2022). https://doi.org/10.1007/s10832-022-00277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00277-8

Keywords

Navigation