Skip to main content
Log in

Band gap tuning of oxygen vacancy-induced Al2O3-TiO2 ceramics processed by spark plasma sintering

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Optical and photocatalytic applications of Al2O3 and TiO2 ceramics are limited, especially under visible light, due to their wide bandgap; so, this parameter plays an important and even decisive role in these applications. In the present study, Al2O3-TiO2 ball milled powders were sintered by spark plasma sintering (SPS) at 1573 K. The products were characterized using XRD, SEM, UV–Vis and electrochemical methods. The results indicated effective improvement in the light absorbing capability of the composites (up to 95%) under visible light and the decrease of the band gap down to 2.2 eV owing to the increase of oxygen vacancies, which was, in turn, due to the reduced atmosphere of the sintering process. In addition, formation of a new phase (Al2TiO5) during sintering greatly affected the absorption of Al2O3-TiO2 composites in the visible light region due to the increase in the fraction of the charge carrier separation centers. Photo-luminescence spectroscopy also showed that tialite formation could be effective in improving the charge separation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are not publicly available due to some restrictions applied by Isfahan University of Technology, but are available from the corresponding author on reasonable request.

References

  1. M. Sathiyakumar, F.D. Gnanam, Ceram. Int. 28, 195 (2002)

    Article  CAS  Google Scholar 

  2. M.F.R.P. Alves, C. dos Santos, C.M.F.A. Cossu, P.A. Suzuki, A.S. Ramos, E.C.T. Ramos, B.G. Simba, K. Strecker, Ceram. Int. 46, 2344 (2020)

    Article  CAS  Google Scholar 

  3. R.D. Bagley, I.B. Cutler, D.L. Johnson, J. Am. Ceram. Soc. 53, 136 (1970)

    Article  CAS  Google Scholar 

  4. R. Viter, I. Iatsunskyi, V. Fedorenko, S. Tumenas, Z. Balevicius, A. Ramanavicius, S. Balme, M. Kempiński, G. Nowaczyk, S. Jurga, M. Bechelany, J. Phys. Chem. C. 120, 5124 (2016)

    Article  CAS  Google Scholar 

  5. Z.L. Xiao, C.Y. Han, U. Welp, H.H. Wang, W.K. Kwok, G.A. Willing, J.M. Hiller, R.E. Cook, D.J. Miller, G.W. Crabtree, Nano. Lett. 2, 1293 (2002)

    Article  CAS  Google Scholar 

  6. H.L. Zhang, J. Baeyens, J. Degreve, G. Caceres, Renew. Sustain. Energy Rev. 22, 466 (2013)

    Article  Google Scholar 

  7. W. Qu, X. Xing, Y. Cao, T. Liu, H. Hong, H. Jin, Appl. Energy. 262, 114421 (2020)

  8. W.A. Beckman, J.A. Duffi, Solar Engineering of Thermal Processes, 4th edn. (John Wiley & Sons Inc, Hoboken, 2013)

    Google Scholar 

  9. D. Sciti, L. Silvestroni, L. Mercatelli, J.L. Sans, E. Sani, Sol. Energy. Mater. Sol. Cells. 109, 8 (2013)

    Article  CAS  Google Scholar 

  10. I.G. Talmy, J.A. Zaykoski, J. Am. Ceram. Soc. 90, 1347 (2007)

    Article  CAS  Google Scholar 

  11. B. R. Golla, A. Mukhopadhyay, B. Basu, Prog. Mater. Sci. 100651 (2020)

  12. A. Mohammad, M.E. Khan, M.H. Cho, T. Yoon, Ceram. Int. 47, 15073 (2021)

    Article  CAS  Google Scholar 

  13. A. Mohammad, M. E. Khan, W. AlHazmi, T. Yoon, J. Electrochem. Soc. 168, 067518 (2021)

  14. A. Mohammad, M. E. Khan, M. H. Cho, T. Yoon, Appl. Surf. Sci. 565, 150337 (2021)

  15. V. Sharma, A. Mohammad, V. Mishra, A. Chaudhary, K. Kapoor, S.M. Mobin, New J. Chem. 40, 2145 (2016)

    Article  CAS  Google Scholar 

  16. A. Mohammad, M.E. Khan, M.R. Karim, M.H. Cho, T. Yoon, Ceram. Int. 47, 23578 (2021)

    Article  CAS  Google Scholar 

  17. A. Mohammad, K. Ahmad, R. Rajak, S.M. Mobin, Electroanalysis 30, 274 (2018)

    Article  CAS  Google Scholar 

  18. P. Chandra, T. Ghosh, N. Choudhary, A. Mohammad, S. M. Mobin, Coord. Chem. Rev. 411, 213241 (2020)

  19. A. Ruys, in A. ed. by A. Ceramics (Ruys (Woodhead Publishing, Sawston, 2019), pp. 71–121

    Google Scholar 

  20. A. Escudero, L. Delevoye, F. Langenhorst, J. Phys. Chem. C. 115, 12196 (2011)

    Article  CAS  Google Scholar 

  21. S. Addepalli, L.G. Kolla, U. Suda, Mater. Sci. Semicond. Process. 57, 137 (2017)

    Article  CAS  Google Scholar 

  22. R.D. Skala, D. Li, I.M. Low, J. Eur. Ceram. Soc. 29, 67 (2009)

    Article  CAS  Google Scholar 

  23. F. Bakhshandeh, A. Azarniya, H. R. Madaah Hosseini, S. Jafari, J. Photochem. Photobiol. A. Chem. 353, 316 (2018)

  24. I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załeski, S. Jurga, J. Phys. Chem. C 119, 20591 (2015)

    Article  CAS  Google Scholar 

  25. G. Mata-Osoro, J.S. Moya, C. Pecharroman, J. Eur. Ceram. Soc. 32, 2925 (2012)

    Article  CAS  Google Scholar 

  26. X. Zhang, S. Zhu, H. Ding, Y. Bai, P. Di, Int. J. Refract. Met. Hard. Mater. 82, 81 (2019)

    Article  CAS  Google Scholar 

  27. X. Li, Q. Zhu, Y. Xu, X. Mao, M. Feng, B. Jiang, L. Zhang, J. Am. Ceram. Soc. 102, 2021 (2019)

    CAS  Google Scholar 

  28. Y. Tan, S. Li, X. Han, J. Xue, T. Liu, X. Zhou, S. Peng, H. Zhang, Ceram. Int. 45, 5448 (2019)

    Article  CAS  Google Scholar 

  29. Z. Peng, X. Luo, Z. Xie, M. Yang, Ceram. Int. 46, 2585 (2020)

    Article  CAS  Google Scholar 

  30. A. Pille, M. Amamra, A. Kanaev, F. Schoenstein, Ceram. Int. 45, 9625 (2019)

    Article  CAS  Google Scholar 

  31. M.S.R. Sarker, M.Z. Alam, M.R. Qadir, M.A. Gafur, M. Moniruzzaman, Int. J. Miner. Metall. Mater. 22, 429 (2015)

    Article  CAS  Google Scholar 

  32. N.P. Padture, S.J. Bennison, H.M. Chan, J. Am. Ceram. Soc. 76, 2312 (1993)

    Article  CAS  Google Scholar 

  33. S. Bueno, M.H. Berger, R. Moreno, C. Baud, J. Eur. Ceram. Soc. 28, 1961 (2008)

    Article  CAS  Google Scholar 

  34. J. Pelleg, Diffusion in Ceramics (Springer International Publishing, Cham, 2016)

    Book  Google Scholar 

  35. P. Wynblatt, G.S. Rohrer, F. Papillon, J. Eur. Ceram. Soc. 23, 2841 (2003)

    Article  CAS  Google Scholar 

  36. R. Papitha, M. Suresh, D. Das, R. Johnson, Process. Appl. Ceram. 7, 143 (2013)

    Article  CAS  Google Scholar 

  37. S. Sharma, R. Bayikadi, P. Swaminathan, RSC. Adv. 6, 86586 (2016)

    Article  CAS  Google Scholar 

  38. C. Yan, X. Xue, W. Zhang, X. Li, J. Liu, S. Yang, Y. Hu, R. Chen, Y. Yan, G. Zhu, Z. Kang, D.J. Kang, J. Liu, Z. Jin, Nano Energy 39, 539 (2017)

    Article  CAS  Google Scholar 

  39. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A. 2, 637 (2014)

    Article  CAS  Google Scholar 

  40. H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, Nanoscale 6, 10216 (2014)

    Article  CAS  Google Scholar 

  41. S.G. Ullattil, P. Periyat, Nanoscale 7, 19184 (2015)

    Article  CAS  Google Scholar 

  42. H. Su, D.L. Johnson, J. Am. Ceram. Soc. 79, 3199 (1996)

    Article  CAS  Google Scholar 

  43. G.L. Liu, Z.R. Huang, X.J. Liu, D.L. Jiang, Chinese Phys. Lett. 25, 1135 (2008)

    Article  CAS  Google Scholar 

  44. F. Kubelka, P. Munk, Z. Tech. Phys. 12, 593 (1931)

  45. M. Choi, A. Janotti, C. G. Van De Walle, J. Appl. Phys. 113 (2013)

  46. B.D. Evans, J. Nucl. Mater. 219, 202 (1995)

    Article  CAS  Google Scholar 

  47. W. Kim, S. Kwon, S. Cho, J. Lee, Corros. Sci. 170, 108664 (2020)

  48. S. Nishioka, J. Hyodo, J.J.M. Vequizo, S. Yamashita, H. Kumagai, K. Kimoto, A. Yamakata, Y. Yamazaki, K. Maeda, ACS. Catal. 8, 7190 (2018)

    Article  CAS  Google Scholar 

  49. M. Kamei, Appl. Phys. Express. 1, 1012011 (2008)

    Article  CAS  Google Scholar 

  50. F. Li, J. Li, J. Zhang, L. Gao, X. Long, Y. Hu, S. Li, J. Jin, J. Ma, Chem. Sus. Chem. 11, 2156 (2018)

    Article  CAS  Google Scholar 

  51. D.C. Cronemeyer, Phys. Rev. 113, 1222 (1959)

    Article  CAS  Google Scholar 

  52. P.P. Shang, B.P. Zhang, J.F. Li, N. Ma, Solid. State. Sci. 12, 1341 (2010)

    Article  CAS  Google Scholar 

  53. W. Gong, H. Yun, Y.B. Ning, J.E. Greedan, W.R. Datars, C.V. Stager, J. Solid. State. Chem. 90, 320 (1991)

    Article  CAS  Google Scholar 

  54. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C. 111, 693 (2007)

    Article  CAS  Google Scholar 

  55. R. Chaim, Z. Shen, M. Nygren, J. Mater. Res. 19, 2527 (2004)

    Article  CAS  Google Scholar 

  56. X. Chen, Y. Wu, Scr. Mater. 162, 14 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hajihashemi.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajihashemi, M., Shamanian, M. & Ashrafizadeh, F. Band gap tuning of oxygen vacancy-induced Al2O3-TiO2 ceramics processed by spark plasma sintering. J Electroceram 48, 35–50 (2022). https://doi.org/10.1007/s10832-021-00273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00273-4

Keywords

Navigation