Skip to main content
Log in

Characterization of anode supported micro-tubular solid oxide fuel cells prepared by successive non-aqueous electrophoretic deposition

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

A Correction to this article was published on 27 April 2023

This article has been updated

Abstract

In this study, micro-tubular solid oxide fuel cells (MT–SOFCs) were manufactured by successive electrophoretic deposition (EPD) in non-aqueous solvent. At first, stable suspensions of YSZ (Electrolyte), Ni/YSZ (anode) and LSM (cathode) in isopropanol were prepared. The EPD was performed on graphite rods under various voltages and times. The proper EPD condition was determined to prepare porous electrodes and dense electrolyte layers. The graphite rod was decomposed by heating at 900˚C and the resulting tubular thin films were sintered in air at 1350˚C. The microstructure of the sintered samples was studied by SEM analysis. The performance of the SOFC was investigated by electrochemical impedance spectroscopy. It was found that MT–SOFC with an internal diameter of 0.7 mm can be obtained via successive EPD. The maximum power density of the cell was 0.25 W/cm2at 850˚C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

Change history

References

  1. N. Minh, J. Mizusaki, S.C. Singhal, ECS Trans. 78, 63 (2017)

    Article  CAS  Google Scholar 

  2. C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14, 1125 (2010)

    Article  CAS  Google Scholar 

  3. M. Ghatee, H. Salihi, J. Electroceramics 35, 98 (2015)

    Article  CAS  Google Scholar 

  4. H.B. Wang, C.R. Xia, G.Y. Meng, D.K. Peng, Mater. Lett. 44, 23 (2000)

    Article  CAS  Google Scholar 

  5. M. Ghatee, F. Salari, Int. J. Appl. Ceram. Technol. 13, 373 (2016)

    Article  CAS  Google Scholar 

  6. Y. Xie, R. Neagu, C.-S. Hsu, X. Zhang, C. Decès-Petit, W. Qu, R. Hui, S. Yick, M. Robertson, R. Maric, D. Ghosh. J. Fuel Cell Sci. Technol. 7, 021007 (2010)

  7. N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, J. Mater. Sci. 45, 3109 (2010)

    Article  CAS  Google Scholar 

  8. A.B. Stambouli, E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002)

    Article  CAS  Google Scholar 

  9. F.S. da Silva, T.M. de Souza, Int. J. Hydrogen Energy 42, 26020 (2017)

    Article  Google Scholar 

  10. S. Munira, M. Hafiz, D. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, K. Li, S.M. Jamil, M.H.D. Othman, J. Eur. Ceram. Soc. 35, 1 (2015)

    Article  Google Scholar 

  11. K.S. Howe, G.J. Thompson, K. Kendall, J. Power Sources 196, 1677 (2011)

    Article  CAS  Google Scholar 

  12. M.Z. Khan, A. Iltaf, H.A. Ishfaq, F.N. Khan, W.H. Tanveer, R. Song, M.T. Mehran, M. Saleem, A. Hussain, Z. Masaud, J. Asian Ceram. Soc. 00, 1 (2021)

    Google Scholar 

  13. K. Kendall, Int. J. Appl. Ceram. Technol. 7, 1 (2010)

    Article  CAS  Google Scholar 

  14. J. Powell, S. Blackburn, J. Eur. Ceram. Soc. 30, 2859 (2010)

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Gao, D. Peng, M. Guangyao, X. Liu, Ceram. Int. 30, 1049 (2004)

    Article  CAS  Google Scholar 

  16. M. Morales, M.A. Laguna-bercero, RSC Adv. 7, 17620 (2017)

    Article  CAS  Google Scholar 

  17. C. Yang, C. Jin, F. Chen, Electrochem. Commun. 12, 657 (2010)

    Article  CAS  Google Scholar 

  18. D. Beckel, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, L.J. Gauckler, A. Bieberle-Hütter, J. Power Sources 173, 325 (2007)

    Article  CAS  Google Scholar 

  19. O.E. Oskouyi, A. Maghsoudipour, M. Shahmiri, M. Hasheminiasari, O. Ekhlasi, J. Alloys Compd. 795, 361 (2019)

    Article  CAS  Google Scholar 

  20. C. Timurkutluk, B. Timurkutluk, Y. Kaplan, Int. J. Hydrogen Energy 45, 23294 (2020)

    Article  CAS  Google Scholar 

  21. B. Mani, M.H. Paydar, J. Eur. Ceram. Soc. 35, 1227 (2015)

    Article  CAS  Google Scholar 

  22. L. Besra, M. Liu, Prog. Mater. Sci. 52, 1 (2007)

    Article  CAS  Google Scholar 

  23. I. Corni, M.P. Ryan, A.R. Boccaccini, J. Eur. Ceram. Soc. 28, 1353 (2008)

    Article  CAS  Google Scholar 

  24. H. Negishi, N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, J. Electrochem. Soc. 147, 1682 (2000)

    Article  CAS  Google Scholar 

  25. I. Zhitomirsky, A. Petric, J. Mater. Sci. 39, 825 (2004)

    Article  CAS  Google Scholar 

  26. I. Zhitomirsky, A. Petric, J. Eur. Ceram. Soc. 20, 2055 (2000)

    Article  CAS  Google Scholar 

  27. P. Sarkar, L. Yamarte, H. Rho, L. Johanson 108, 103 (2007)

    Google Scholar 

  28. F. Chen and M. Liu, 21, 127 (2001).

  29. H. Negishi, K. Yamaji, N. Sakai, T. Horita, H. Yanagishita, H. Yokokawa, J. Mater. Sci. 39, 833 (2004)

    Article  CAS  Google Scholar 

  30. J.S. Cherng, C.C. Wu, F.A. Yu, T.H. Yeh, J. Power Sources 232, 353 (2013)

    Article  CAS  Google Scholar 

  31. P. Garc, B. Ferrari, R. Moreno, M. T. Colomer 27, 4241 (2007)

    Google Scholar 

  32. J.S. Cherng, M.Y. Ho, T.H. Yeh, W.H. Chen, Ceram. Int. 38, S477 (2012)

    Article  CAS  Google Scholar 

  33. R. Muccillo, E. Caproni, D. Gouvêa, R. Muccillo, E. Caproni, D. Gouvêa, R. Muccillo, Ceram. Int. 37, 273 (2011)

    Article  Google Scholar 

  34. J. Myung, S. Kim, H. Park, T. ho Shin, S. Kim, H. Park, J. Moon, S.-H. Hyun. Int. J. Hydrogen Energy 40, 2792 (2015)

  35. H. Nishikiori, J. Shindoh, N. Takahashi, T. Takagi, N. Tanaka, T. Fujii, Appl. Clay Sci. 43, 160 (2009)

    Article  CAS  Google Scholar 

  36. K. Wu, Y. Wang, I. Zhitomirsky, J. Colloid Interface Sci. 352, 371 (2010)

    Article  CAS  Google Scholar 

  37. J. Zhang, D. Jiang, Q. Lin, S. Carbide, J. Zhang, D. Jiang, Q. Lin, J. Am. Ceram. Soc. 88, 1054 (2005)

    Article  CAS  Google Scholar 

  38. J.-H. Jean, S.-F. Yeh, C. Chen, J. Mater. Res. 12, 1062 (1997)

    Article  CAS  Google Scholar 

  39. C.-Y. Chen, S.-Y. Chen, D.-M. Liu, Acta Mater. 47, 2717 (1999)

    Article  CAS  Google Scholar 

  40. J. Ma, C. Wang, K.-W.W. Peng, Biomaterials 24, 3505 (2003)

    Article  CAS  Google Scholar 

  41. R.M. Batista, E.N.S. Muccillo, Ceram. Int. 37, 1047 (2011)

    Article  CAS  Google Scholar 

  42. B.S. Prakash, S.S. Kumar, S.T. Aruna, Renew. Sustain. Energy Rev. 36, 149 (2014)

    Article  Google Scholar 

  43. S. Mcintosh, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 150, A1305 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from shahrood university of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghatee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the original version of this article, the author name S. H. Mussavi was incorrectly written as S. H. Moussavi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherad, R., Dodangei, S., Mussavi Rizi, S.H. et al. Characterization of anode supported micro-tubular solid oxide fuel cells prepared by successive non-aqueous electrophoretic deposition. J Electroceram 48, 1–7 (2022). https://doi.org/10.1007/s10832-021-00272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00272-5

Keywords

Navigation