Skip to main content
Log in

Modulation on the electrical and optical properties of Na and Rh co-doped Ruddlesden-Popper layered Ca3Ti2O7

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Layered perovskite Ca2.91Na0.09Ti2-xRhxO7 (x = 0.00, 0.02, 0.04, 0.06) were synthesized by a conventional solid-state reaction. Room temperature ferroelectricity has been confirmed. The remanent polarization increases with an increase of Rh content, which is due to a larger oxygen octahedral distortion by Rh doping. The coercive field increases with Rh doping as the pinning effect of oxygen vacancies reduce the mobility of domain wall. Remanent polarization and coercive field are caused by different mechanisms, so it is possible to modulate them independently to meet the requirement of application in ferroelectric field. The concentration of oxygen vacancy increased with Rh doping, leading to the significant increase of leakage current density. The bandgap of samples doped with Rh drastically decrease and the visible light response of the sample was improved by Rh doping due to the formation of impurity energy levels within the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The purpose of identifying the equipment and software in this article is to specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology.

References

  1. V. Garcia, M. Bibes, Inside story of ferroelectric memories. Nature 483, 279 (2012). https://doi.org/10.1038/483279a

    Article  CAS  Google Scholar 

  2. H.L.B. Bostrom, M.S. Senn, A.L. Goodwin, Recipes for improper ferroelectricity in molecular perovskites. Nat Commun 9, 2380 (2018). https://doi.org/10.1038/s41467-018-04764-x

    Article  CAS  Google Scholar 

  3. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23, 1062–1087 (2011). https://doi.org/10.1002/adma.201003636

    Article  CAS  Google Scholar 

  4. N.A. Benedek, C.J. Fennie, Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys Rev Lett 106, 107204 (2011). https://doi.org/10.1103/PhysRevLett.106.107204

    Article  CAS  Google Scholar 

  5. A.P. Levanyuk, D.G. Sannikov, Improper ferroelectrics. Soviet Physics Uspekhi 17, 199–214 (1974). https://doi.org/10.1070/pu1974v017n02abeh004336

    Article  Google Scholar 

  6. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008). https://doi.org/10.1038/nature06817

    Article  CAS  Google Scholar 

  7. S.N. Ruddlesden, P. Popper, New compounds of the K2NIF4 type, Acta Cryst. 10, 538-5390 (1957). https://doi.org/10.1107/S0365110X57001929

  8. S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure, Acta Cryst. 11, 54-55 (1958). https://doi.org/10.1107/S0365110X58000128

  9. Y.S. Oh, X. Luo, F.T. Huang, Y. Wang, S.W. Cheong, Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat Mater 14, 407–413 (2015). https://doi.org/10.1038/nmat4168

    Article  CAS  Google Scholar 

  10. R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, S. Jiang, Luminescence properties of Ca3Ti2O7: Eu3+, Bi3+, R+ (R+ =Li+, Na+, and K+ ) red emission phosphor. J. Solid State Chem. 220, 97–101 (2014). https://doi.org/10.1016/j.jssc.2014.08.015

    Article  CAS  Google Scholar 

  11. X.Q. Liu, J.W. Wu, X.X. Shi, H.J. Zhao, H.Y. Zhou, R.H. Qiu, W.Q. Zhang, X.M. Chen, Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti, Mn)2O7 ceramics. Appl. Phys. Lett. 106(2015)

  12. S. Nishimoto, Y. Okazaki, M. Matsuda, M. Miyake, Photocatalytic H2 evolution by layered perovskite Ca3Ti2O7 codoped with Rh and Ln (Ln = La, Pr, Nd, Eu, Gd, Yb, and Y) under visible light irradiation. J. Ceram. Soc. Jpn. 117, 1175–1179 (2009). https://doi.org/10.2109/jcersj2.117.1175

    Article  CAS  Google Scholar 

  13. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013). https://doi.org/10.1038/nmat3691

    Article  CAS  Google Scholar 

  14. Y. Feng, W.-L. Li, D. Xu, Y.-L. Qiao, Y. Yu, Y. Zhao, W.-D. Fei, Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability. ACS Appl. Mater. Interfaces. 8, 9231–9241 (2016). https://doi.org/10.1021/acsami.6b01539

    Article  CAS  Google Scholar 

  15. C. Huang, W. Wong-Ng, W.F. Liu, X.N. Zhang, Y. Jiang, P. Wu, B.Y. Tong, H. Zhao, S.Y. Wang, Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden-Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7. J. Alloy. Compd. 770, 582–588 (2019). https://doi.org/10.1016/j.jallcom.2018.08.172

    Article  CAS  Google Scholar 

  16. D.B. Wiles. R.A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst. 1, 149-151 (1981). https://doi.org/10.1107/S0021889881008996

  17. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  18. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  19. K. Hawkins, T.J. White, F.T. Smith, Defect structure and chemistry of (CaxSr1-x)n+1Tin03n+1 layer perovskites, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 336, 541–569 (1991). https://doi.org/10.1098/rsta.1991.0099

    Article  CAS  Google Scholar 

  20. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32, 751-767 (1976) https://doi.org/10.1107/S0567739476001551

  21. X. Zhang, W. Liu, Y. Han, C. Huang, P. Wu, W. Zhou, J. Gao, G. Rao, S. Wang, Novel optical and magnetic properties of Li-doped quasi-2D manganate Ca3Mn2O7 particles. J. Mater. Chem. C. 5, 7011–7019 (2017). https://doi.org/10.1039/c7tc01667k

    Article  CAS  Google Scholar 

  22. X.Q. Liu, B.H. Chen, J.J. Lu, Z.Z. Hu, X.M. Chen, Hybrid improper ferroelectricity in B-site substituted Ca3Ti2O7: The role of tolerance factor. Appl. Phys. Lett. 113, 242904 (2018). https://doi.org/10.1063/1.5055682

    Article  CAS  Google Scholar 

  23. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T.A.O. Zeng, Z. Gao, M.J. Reece, The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops. J. Adv. Dielectr. 01, 107–118 (2011). https://doi.org/10.1142/s2010135x11000148

    Article  CAS  Google Scholar 

  24. C.F. Li, S.H. Zheng, H.W. Wang, J.J. Gong, X. Li, Y. Zhang, K.L. Yang, L. Lin, Z.B. Yan, S. Dong, J.M. Liu, Structural transitions in hybrid improper ferroelectric Ca3Ti2O7 tuned by site-selective isovalent substitutions: A first-principles study. Phys. Rev. B 97, 184105 (2018). https://doi.org/10.1103/PhysRevB.97.184105

    Article  CAS  Google Scholar 

  25. B. Xu, D. Wang, H.J. Zhao, J. Íñiguez, X.M. Chen, L. Bellaiche, Hybrid Improper Ferroelectricity in Multiferroic Superlattices: Finite-Temperature Properties and Electric-Field-Driven Switching of Polarization and Magnetization. Adv. Func. Mater. 25, 3626–3633 (2015). https://doi.org/10.1002/adfm.201501113

    Article  CAS  Google Scholar 

  26. S.Y. Wang, X. Qiu, J. Gao, Y. Feng, W.N. Su, J.X. Zheng, D.S. Yu, D.J. Li, Electrical reliability and leakage mechanisms in highly resistive multiferroic La0.1Bi0.9FeO3 ceramics. Appl. Phys. Lett. 98, 152902 (2011). https://doi.org/10.1063/1.3580604.

  27. J.Y. Li, R.C. Rogan, E. Ustundag, K. Bhattacharya, Domain switching in polycrystalline ferroelectric ceramics. Nat Mater 4, 776–781 (2005). https://doi.org/10.1038/nmat1485

    Article  CAS  Google Scholar 

  28. L.L. Noto, S.S. Pitale, J.J. Terblans, O.M. Ntwaeaborwa, H.C. Swart, Surface chemical changes of CaTiO3:Pr3+ upon electron beam irradiation. Phys. B 407, 1517–1520 (2012). https://doi.org/10.1016/j.physb.2011.09.075

    Article  CAS  Google Scholar 

  29. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000). https://doi.org/10.1039/a908800h

    Article  CAS  Google Scholar 

  30. S.M. Mukhopadhyay, T.C.S. Chen, Interaction of PbZrxTi1-xO3(PZT) with Ni: role of surface defects. J. Phys. D Appl. Phys. 28, 2170–2175 (1995). https://doi.org/10.1088/0022-3727/28/10/028

    Article  CAS  Google Scholar 

  31. L. Jin, F. Li, S. Zhang, D.J. Green, Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 97, 1–27 (2014). https://doi.org/10.1111/jace.12773

    Article  CAS  Google Scholar 

  32. Y. Yoneda, Y. Kitanaka, Y. Noguchi, M. Miyayama, Electronic and local structures of Mn-doped BiFeO3 crystals. Phys. Rev. B 86, 184112 (2012). https://doi.org/10.1103/PhysRevB.86.184112

    Article  CAS  Google Scholar 

  33. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys. Rev. B. 82, 024102 (2010). https://doi.org/10.1103/PhysRevB.82.024102.

  34. L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003). https://doi.org/10.1103/PhysRevB.68.134103

    Article  CAS  Google Scholar 

  35. Y. Okazaki, T. Mishima, S. Nishimoto, M. Matsuda, M. Miyake, Photocatalytic activity of Ca3Ti2O7 layered-perovskite doped with Rh under visible light irradiation. Mater. Lett. 62, 3337–3340 (2008). https://doi.org/10.1016/j.matlet.2008.02.052

    Article  CAS  Google Scholar 

  36. X. Xu, W. Liu, P. Wu, H. Zhang, M. Guo, Y. Han, C. Zhang, J. Gao, G. Rao, S. Wang, Abnormal variation of band gap in Zn doped Bi0.9La0.1FeO3 nanoparticles: Role of Fe-O-Fe bond angle and Fe-O bond anisotropy. Appl. Phys. Lett. 107, 042905 (2015).https://doi.org/10.1063/1.4927644.

  37. J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b). 15, 627–637 (1966).https://doi.org/10.1002/pssb.19660150224.

  38. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors 22, 0903–0922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  39. J. Tauc, Optical Properties of Amorphous Semiconductors, in: J. Tauc (Ed.) Amorphous and Liquid Semiconductors, Springer US, Boston, MA. 159–220 (1974). https://doi.org/10.1007/978-1-4615-8705-7_4.

  40. P. Kumaradhas, R. Gopalan, G. Kulkarni, A charge density study of the effect of irradiation on the α -form of p -nitrophenol. J. Chem. Sci. 111, 569–579 (1999). https://doi.org/10.1007/BF02872599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Wei Zhou for helpful discussions. This work was funded by the National Natural Science Foundation of China (51572193), and Natural Science Foundation of Tianjin (20JCZDJC00210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. F. Liu or S. Y. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1559 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Liu, W.F., Wong-Ng, W. et al. Modulation on the electrical and optical properties of Na and Rh co-doped Ruddlesden-Popper layered Ca3Ti2O7. J Electroceram 47, 42–50 (2021). https://doi.org/10.1007/s10832-021-00261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00261-8

Keywords

Navigation