Skip to main content
Log in

Influence of the densification process on the structural, microstructural, and dielectric properties of PLMN-PT:0.5Er ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Doped and un-doped 0.5% Er3+ ferroelectric ceramics (1-x)[Pb(1-y)Lay(Mg1/3Nb2/3)O3]-xPbTiO3 (PLMN-PT) were prepared via solid-state reaction using the columbite method and densified by means of conventional sintering (CS), uniaxial hot pressing (HP), and spark plasma sintering (SPS). We review and discuss the influences of the densification process on the microstructural, structural, and dielectric properties of the ceramics. Samples with no porosity or grain size changes caused by the densification process were observed. A density of the ceramics close to the theoretical value (more than 99%) was reached with HP. The heat treatment process in ceramics through SPS eliminates the dark color and improves transparency. Furthermore, the influence of the densification process on the microstructural and structural properties of the ceramics was reviewed and discussed, finding that the electrical properties are favored by HP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. S. Galasso, Structure, properties, and preparation of perovskite-type compounds. Oxford, New York: Pergamon Press (1969) 

  2. U. Kenji, Ferroelectric devices, CRC Press (2009)

  3. Z. Wei, Y. Huang, T. Tsuboi, Y. Nakai, J. Zeng, G. Li, Optical characteristics of Er3+-doped PMN–PT transparent ceramics. Ceram. Int. 38(4), 3397–3402 (2012)

    Article  CAS  Google Scholar 

  4. S. Shannigrahi, K. Yao, Thermal annealing effects on the structural and electrical properties of PMN-PZ-PT ternary thin films deposited by a sol-gel process. J. Eur. Ceram. Soc. 25(5), 759–765 (2005)

    Article  CAS  Google Scholar 

  5. G.H. Haertling, Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  6. A. Suzuki, T. Ishii, Y. Maruyama, Optical switching in polymer gels. J. Appl. Phys. 80(1), 131-136 (1996)

  7. K. Uchino, Electro-optic ceramics and their display applications. Ceram. Int. 21(5), 309–315 (1995)

    Article  CAS  Google Scholar 

  8. F. Andrés, L. Badillo, J.A. Eiras, F.P. Milton, D. Garcia, Preparation and Microstructural , Structural , Optical and Electro-Optical Properties of La Doped PMN-PT Transparent Ceramics. Optics and photonics Journal. 2(03) 2012, 157–162, (2012)

  9. R.G. Sabat, Characterization of PLZT Ceramics for Optical Sensor and Actuator Devices. Cdn.Intechopen.Com 3–24 (2011)

  10. Z. Song et al., Fabrication and ferroelectric/dielectric properties of La-doped PMN-PT ceramics with high optical transmittance. Ceram. Int. 43(4), 3720–3725 (2017)

    Article  CAS  Google Scholar 

  11. W. Ji et al., Effects of PMN/PT ratio on optical and electro-optic properties of PLMNT transparent ceramics. Ceram. Int. 41(9), 10387–10393 (2015)

    Article  CAS  Google Scholar 

  12. H. Jiang, Y.K. Zou, Q. Chen, K.K. Li, R. Zhang, Y. Wang, Transparent Electro-Optic Ceramics and Devices. Proc. SPIE 5644, Optoelectronic Devices and integration (2005)

  13. B.U. Emission, E. Ferroelectric, F. Oxides, Bright Upconversion Emission, Increased T. 190(31439), 184–190 (2013)

  14. Z. Liang, S. Pei, F. Qin, Y. Zheng, H. Zhao, Z. Zhang, as a linear response fl uorescent temperature sensor. J. Lumin. 181, 128–132 (2017)

    Article  CAS  Google Scholar 

  15. S.L. Swartz, T.R. Shrout, Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17(10), 1245–1250 (1982)

    Article  CAS  Google Scholar 

  16. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494(1–2), 175–189 (2010)

    Article  CAS  Google Scholar 

  17. G. Bernard-Granger, A. Addad, G. Fantozzi, G. Bonnefont, C. Guizard, D. Vernat, Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing. Acta Mater. 58(9), 3390–3399 (2010)

    Article  CAS  Google Scholar 

  18. F.A. Londoño, J.A. Eiras, D. Garcia, Novas cerâmicas ferroelétricas transparentes com altos coeficientes eletroópticos: PLMN-PT. Cerâmica 57(344), 404–408 (2011)

    Article  Google Scholar 

  19. A. Ianculescu, A. Br, I. Pasuk, C. Popescu, Synthesis of lead magnesium noibate and La-modified lead magnesium niobate using different Mg precursors. J. Therm. Anal. Calorim. 80, 663–670 (2005)

    Article  CAS  Google Scholar 

  20. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Perovskite phase formation and ferroelectric properties of the lead nickel niobate–lead zinc niobate–lead zirconate titanate ternary system. J. Mater. Res 18(12), 2882–2889 (2003)

    Article  CAS  Google Scholar 

  21. N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, The morphotropic phase boundary and dielectric properties of the xPb(Zr1/2Ti1/2)O3-(1-x)Pb(Ni1/3Nb3/3)O3 perovskite solid solution. J. Appl. Phys. 96(9), 5103-5109 (2004)

  22. P. Taylor, Low Temperature Preparation of Antiferroelectric PZ and PBZ Powders Using the Combustion Technique. Ferroelectrics 383(June), 50–56 (2009)

    Google Scholar 

  23. C.F.A.L. I et al., Effect of atmosphere on the perovskite phase stability of 0.87PLMN-0.13PT powders. Rev. Cubana de Quimica vol. 24(1), 19–26 (2012)

  24. B. Zhang, L. Zhang, J. Li, H. Zhang, S. Jin, SPS Sintering of NaNbO 3 -KNbO 3 Piezoelectric Ceramics. Mater. Sci. Forum. 479, 1165–1168 (2005)

  25. A.K. Singh, D. Pandey, O. Zaharko, Powder neutron diffraction study of phase transitions in and a phase diagram of (1-x)[Pb(Mg1/3Nb2/3)O3]. Phys. Rev. B 74, pp. 1–18 (2006)

  26. M.E. Aristizabal, J. Eiras, D. Garcia, F.A. Londoño, Structural, microstructural and dielectrical properties of Yb doped PLMN-13PT ceramics. Ferroelectrics 545(1), 141–149 (2019)

    Article  CAS  Google Scholar 

  27. J.D.S. Guerra, J.A. Souza, D. Garcia, J.A. Eiras, Non-Linear Dielectric Properties of PLMN-PT Relaxor Ferroelectrics. Ferroelectrics 369(1), 170–178 (2008)

    Article  CAS  Google Scholar 

  28. N. Kim, D.A. Mchenry, S. Jang, T.R. Shrout, Fabrication of Optically Transparent lead Magnesium Niobate Polycrystalline Ceramics Using Hot Isostatic Pressing. J. Am. Ceram. Soc. 73(4), 923–928 (1989)

    Article  Google Scholar 

  29. J. Park, U. Chung, N.M. Hwang, D. Kim, Preparation of Lead Magnesium niobate -Lead titanate ceramics by SPS. J. Am. Ceram. 84(12), 3057–3059 (2001)

    Article  CAS  Google Scholar 

  30. L. Pardo, J. Ricote, Multifunctional polycrystalline ferroelectric Materials. Processing and properties., vol. 140, no. 4. 2016.

  31. M.R. Winter, S.M. Pilgrim, Study on the Effects of Lanthanum Doping on the Microstructure and dielectric properties of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3. J. Am. Ceram. Soc vol. 20, no. 188867, pp. 314–320 (2001)

  32. R.F. Yue, W.Z. He, F.F. An, J. Yu, G.C. Chen, Preparation of PZT-based piezoceramics with transgranular fracture mode. Ceram. Int. 38(SUPPL), 1 (2012)

    Google Scholar 

  33. E.R. Nielsen, E. Ringgaard, M. Kosec, Liquid-phase sintering of Pb(Zr, Ti)O3 using PbO-WO3 additive. J. Eur. Ceram. Soc. 22, 1847–1855 (2002)

    Article  CAS  Google Scholar 

  34. S. Jiansirisomboon, K. Songsiri, A. Watcharapasorn, T. Tunkasiri, Mechanical properties and crack growth behavior in poled ferroelectric PMN-PZT ceramics. Curr. Appl. Phys. 6(3), 299–302 (2006)

    Article  Google Scholar 

  35. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics. 76(1). 241–267 (1987)

  36. I.A Santos, J.A Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J. Phys. Condens. Matter 13, 11733–11740 (2001)

  37. R. Zuo, T. Granzow, D.C. Lupascu, J. Rodel, PMN-PT ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 90(4), 1101–1106 (2007)

    Article  CAS  Google Scholar 

  38. T. Badapanda, Dielectric Behavior of Yttrium doped Barium-zirconium-titanate. Ceramics. J. Korean Phys. Soc. 55(2), 749–754 (2009)

  39. V.A. Isupov, Ferroelectric and Antiferroelectric Perovskites PbB′ 0.5 B′′0.5O3. Ferroelectric 289(1), 131-195 (2011)

Download references

Acknowledgements

We wish to thank CAPES, FAPESP and CNPq for their financial support, and Francisco José Picon and Natalia Zanardi for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Londoño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londoño, F.A., Garcia, D., Rincon, J.D. et al. Influence of the densification process on the structural, microstructural, and dielectric properties of PLMN-PT:0.5Er ceramics. J Electroceram 47, 8–14 (2021). https://doi.org/10.1007/s10832-021-00257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00257-4

Keywords

Navigation